메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
최원준 (전남대학교) 이상원 (Dartwork) Max Langtry (University of Cambridge) Ruchi Choudhary (University of Cambridge)
저널정보
대한설비공학회 설비공학논문집 설비공학논문집 제37권 제2호
발행연도
2025.2
수록면
72 - 81 (10page)
DOI
10.6110/KJACR.2025.37.2.72

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Data scarcity and high development costs pose significant challenges to building-specific energy demand forecasting models. To address these issues, this study introduces a time series similarity assessment method that utilizes TS2Vec, an unsupervised learning-based encoder for extracting time series representation vectors. The efficacy of this approach is demonstrated using anonymized datasets of building electricity usage from Cambridge, UK. The proposed methodology stands out for its ability to identify high-similarity data segments by flexibly adjusting the evaluation time window used for extracting representation vectors, outperforming traditional average similarity assessments. Principal component analysis was employed for dimensionality reduction and visualization, alongside a moving window cosine similarity approach to enhance the interpretability of complex multivariate time series data similarities. The study's key findings are as follows. First, dynamic similarity analysis effectively captured the complexity of building energy use patterns. Second, the approach demonstrated the potential to optimize transfer learning by automatically identifying the most suitable source data. Third, the study explored the feasibility of employing dynamic model selection and ensemble techniques based on temporal similarity changes. This study proposes a practical and scalable methodology to mitigate data scarcity and reduce model development costs, thereby facilitating more efficient, adaptive, and accurate energy demand forecasting.

목차

Abstract
1. 연구배경 및 목적
2. 사용 데이터 정보
3. 시계열 인코더 모델
4. 실험 디자인
5. 결과
6. 논의
7. 결론
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0