메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Jaeyeong Ryu (Chung-Ang University) Soungsill Park (Chung-Ang University) Youngho Chai (Chung-Ang University)
저널정보
Korean Institute of Information Scientists and Engineers Journal of Computing Science and Engineering Journal of Computing Science and Engineering Vol.18 No.4
발행연도
2024.12
수록면
181 - 195 (15page)
DOI
10.5626/JCSE.2024.18.4.181

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
We investigate a motion generation model capable of producing desired motions using minimal pose data. Although similar to conventional motion interpolation models in terms of motion data input, the key difference lies in our model's ability to generate diverse motions tailored to user intentions. To differentiate it from motion interpolation models, we establish motion recognition and controllable motion generation systems utilizing pretrained generative models. We develop the motion recognition system using a latent vector derived from the pretrained model's encoder, which encodes substantial contextual information and can be identified by a simple linear support vector machine. The controllable motion generation system employs the recognized latent vector and input poses, based on the pretrained model's decoder. In experiments, our model demonstrates superior generated motion accuracy compared to text-based motion generation models. We also compare our model with motion interpolation models, showing comparable performance. Furthermore, we validate the efficacy of skip connections through qualitative evaluations. Finally, we confirm that our system can gen- erate various types of motion utilizing latent vectors.

목차

Abstract
I. INTRODUCTION
II. RELATED WORK
III. PROPOSED SYSTEM
IV. EXPERIMENTS
V. CONCLUSION
REFERENCES

참고문헌 (52)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-151-25-02-092300769