메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
이지원 (서울대학교병원) 이봉진 (서울대학교병원) 박준동 (서울대학교)
저널정보
대한중환자의학회 Acute and Critical Care Acute and Critical Care Vol.39 No.3
발행연도
2024.8
수록면
400 - 407 (8page)
DOI
10.4266/acc.2024.00031

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Background: Diagnosing pediatric septic shock is difficult due to the complex and often impractical traditional criteria, such as systemic inflammatory response syndrome (SIRS), which result in delays and higher risks. This study aims to develop a deep learning-based model using SIRS data for early diagnosis in pediatric septic shock cases.Methods: The study analyzed data from pediatric patients (<18 years old) admitted to a tertiary hospital from January 2010 to July 2023. Vital signs, lab tests, and clinical information were collected. Septic shock cases were identified using SIRS criteria and inotrope use. A deep learning model was trained and evaluated using the area under the receiver operating characteristics curve (AUROC) and area under the precision-recall curve (AUPRC). Variable contributions were analyzed using the Shapley additive explanation value.Results: The analysis, involving 9,616,115 measurements, identified 34,696 septic shock cases (0.4%). Oxygen supply was crucial for 41.5% of the control group and 20.8% of the septic shock group. The final model showed strong performance, with an AUROC of 0.927 and AUPRC of 0.879. Key influencers were age, oxygen supply, sex, and partial pressure of carbon dioxide, while body temperature had minimal impact on estimation.Conclusions: The proposed deep learning model simplifies early septic shock diagnosis in pediatric patients, reducing the diagnostic workload. Its high accuracy allows timely treatment, but external validation through prospective studies is needed.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

최근 본 자료

전체보기

댓글(0)

0