메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
방윤석 (인하대학교 전기컴퓨터공학과) 김병형 (인하대학교 전기컴퓨터공학과)
저널정보
대한의용생체공학회 의공학회지 의공학회지 제45권 제4호
발행연도
2024.8
수록면
179 - 186 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
This paper investigates the impact of Riemannian Procrustes Analysis (RPA) on enhancing the classification performance of SPD-Net when applied to EEG signals across different sessions and subjects. EEG signals, known for their inherent individual variability, are initially transformed into Symmetric Positive Definite (SPD) matrices, which are natu- rally represented on a Riemannian manifold. To mitigate the variability between sessions and subjects, we employ RPA, a method that geometrically aligns the statistical distributions of these matrices on the manifold. This alignment is designed to reduce individual differences and improve the accuracy of EEG signal classification. SPD-Net, a deep learning archi- tecture that maintains the Riemannian structure of the data, is then used for classification. We compare its performance with the Minimum Distance to Mean (MDM) classifier, a conventional method rooted in Riemannian geometry. The ex- perimental results demonstrate that incorporating RPA as a preprocessing step enhances the classification accuracy of SPD-Net, validating that the alignment of statistical distributions on the Riemannian manifold is an effective strategy for improving EEG-based BCI systems. These findings suggest that RPA can play a role in addressing individual variability, thereby increasing the robustness and generalization capability of EEG signal classification in practical BCI applications.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

최근 본 자료

전체보기

댓글(0)

0