메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
강한훈 (삼성SDS)
저널정보
Korean Institute of Information Scientists and Engineers Journal of KIISE Journal of KIISE Vol.52 No.2
발행연도
2025.2
수록면
141 - 151 (11page)
DOI
10.5626/JOK.2025.52.2.141

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문에서는 자연어처리(NLP) 분야의 주요 과제인 유사 텍스트 분석, 텍스트 분류, 질의 응답, 군집 분석 과제에 임베딩 기술을 적용하고, 그 성능을 평가하였다. 최근, 자연어처리 분야에서는 대규모 언어 모델의 발전과 함께 임베딩 기술이 다양한 응용 분야에서 중요한 역할을 하고 있다. 현재까지 여러 종류의 임베딩 모델이 공개되었고, 본 논문에서는 공개된 여러 임베딩 모델에 대한 성능을 평가했다. 이를 위해, 선정한 각 과제의 중간 과정으로써 임베딩 모델을 통한 벡터 값을 활용하여 각 과제별 임베딩 모델의 성능을 평가한다. 실험 데이터 셋은 공개된 한국어 및 영어 데이터 셋을 활용하였고, NLP 과제는 5가지로 정의하였다. 특히, 다국어, 교차 언어, 긴 문서 검색 등에서 탁월한 성능을 보인 BGE-M3 모델의 성능에 주목했다. 실험 결과, BG3-M3 모델이 3개의 NLP 과제에서 우수한 성능을 보였다. 본 연구의 결과는 최근의 검색 증강 생성(Retrieval-Augmented Generation)에서 유사 문장 또는 유사 문서를 찾기 위해 활용되는 임베딩 모델을 선택하는 데 있어 방향을 제시할 것으로 기대한다.

목차

요약
Abstract
1. 서론
2. 관련 연구
3. 실험
4. 결론 및 향후 연구
참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-151-25-02-092461203