메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김신웅 (용인대학교) 김해림 (용인대학교) 심은아 (용인대학교) 이경재 (용인대학교) 구병모 (용인대학교)
저널정보
한국체육과학회 한국체육과학회지 한국체육과학회지 제34권 제1호 (자연과학 편)
발행연도
2025.2
수록면
622 - 633 (12page)
DOI
10.35159/kjss.2025.2.34.1.622

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
This study analyzes domestic research trends in camera-based motion analysis utilizing pose estimation algorithms, focusing on advancements in artificial intelligence and its applications in sports, rehabilitation, and posture analysis. The methodology involved a literature search, selecting 25 studies published between 2020 and 2024 based on recency, relevance, and publication in recognized journals. The findings reveal a growing trend in the adoption of camera-based motion analysis across multiple disciplines. In sports science, these technologies were used to enhance performance through motion tracking, while in rehabilitation, they provided continuous monitoring of patient progress and actionable feedback. One commonly used assessment tool, the TGMD-3, relies on subjective and labor-intensive assessments by evaluators. Advancements in algorithms such as MediaPipe, PoseNet, and OpenPose have the potential to address these limitations, offering more precise and efficient ways to assess human motion with reduced reliance on manual intervention. This review also identifies several challenges, including the need for higher algorithm reliability, standardization of evaluation methods, and broader applications beyond elite athletes to include vulnerable populations. Despite these limitations, the integration of human pose estimation with computer vision has significantly improved the objectivity and accessibility of motion analysis, offering potential improvements in athletic training, medical diagnostics, and ergonomic assessments. Future research should enhance algorithm validity and explore interdisciplinary applications to unlock their full potential in diverse fields.

목차

Abstract
Ⅰ. 서론
Ⅱ. 연구방법
Ⅲ. 결과
Ⅳ. 논의
Ⅴ. 결론
참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-151-25-02-092448835