메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Joon-Su Kim (Sangmyung University) Dong-Keun Kim (Sangmyung University)
저널정보
한국정보통신학회 INTERNATIONAL CONFERENCE ON FUTURE INFORMATION & COMMUNICATION ENGINEERING 2023 INTERNATIONAL CONFERENCE ON FUTURE INFORMATION & COMMUNICATION ENGINEERING Vo.14 No.1
발행연도
2023.1
수록면
119 - 122 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
In this study, to improve the shortcomings of existing alignment-free sequence analysis and alignment-based sequence analysis, the new DNA alignment-free sequence analysis algorithm with high processing speed and gene mutation resistance is suggested. Many studies have used high-cost deep learning such as CNN and RNN to increase the accuracy of biological classification with sequence datasets. Instead of using that, the analysis algorithm preprocess the gene dataset, so that it allows meaningful results in a short time with low-cost supervised or unsupervised learning models. In addition, several thousand or more sequences may be stably preprocessed with limited resources. The COI DNA genetic dataset for each mammal, bird, reptile, fish, and amphibian in the form of a FASTA file was used to preprocess. The new algorithm used 'k-mers slicing' with GC-content and 'k-mers embedding' to reduce the deviation in genetic samples and those size. Compared to the commonly used alignment-based sequence analysis programs, it showed significantly faster processing speeds. In addition, the accuracy of machine learning for species classification was higher than when learned with the programs.

목차

Abstract
Ⅰ. INTRODUCTION
Ⅱ. SYSTEM MODEL AND METHODS
Ⅲ. RESULTS
Ⅳ. DISCUSSION AND CONCLUSIONS
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

최근 본 자료

전체보기

댓글(0)

0