메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Akari Moe (Dong-A University) Soomin Jeon (Dong-A University)
저널정보
한국정보통신학회JICCE Journal of information and communication convergence engineering Journal of information and communication convergence engineering Vol.23 No.1
발행연도
2025.3
수록면
55 - 63 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The demand for high-quality images is rapidly increasing because of the large number of medical images captured daily. However, these images are often degraded by noise, leading to a reduced visual quality. Therefore, the need for methods that can reduce noise without compromising image quality is growing. Although various noise reduction techniques have been proposed, each method has its own advantages and limitations. This paper reviews traditional filtering methods such as median filtering, weighted median filtering, and total variation regularization. We then combine these methods to create a hybrid filtering technique. Finally, we compare the performance of traditional methods with that of our proposed hybrid approach and evaluate their effectiveness based on the characteristics of each technique. The results highlight the strengths of the proposed method and its potential for improving medical image quality while reducing noise.

목차

Abstract
I. INTRODUCTION
II. SYSTEM MODEL AND METHODS
III. RESULTS
V. CONCLUSIONS
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0