메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Juan Daniel Molina (Institución Universitaria ITM) J. Andrés Christen (Centro de Investigación en Matemáticas)
저널정보
한국통계학회 CSAM(Communications for Statistical Applications and Methods) CSAM(Communications for Statistical Applications and Methods) 제32권 제2호
발행연도
2025.3
수록면
181 - 196 (16page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Ordinary differential equations (ODE) have been widely used to represent phenomena in different areas of knowledge. In these contexts, a common situation is that the values of the parameters that characterize the ODE are not known, but instead there are observations and from these we want to infer the parameters. This is called an inverse problem. In recent years, the use of the Bayesian statistical approach has been widely extended to perform inference analysis on inverse problems associated with differential equations (ordinary or partial). In this article we expose the main theoretical, computational and practical considerations that must be taken into account to make Bayesian inference for ODE. Additionally, we develop an application of the exposed concepts in the context of the Lotka-Volterra equations. The application consists in that we do an inference analysis using real data of a hare and lynx population dynamics. Also we perform a simulation study in which we evaluate non-trivial concepts such as the error control of the posterior distributions and of the predictions. The main contributions of this article are: First, to present the methodology and an illustrative example of how to develop from the Bayesian approach the uncertainty quantification of parameters and state variables in the context of phenomena that are represented with ODE, second, the statistical error model that we propose that satisfactorily fit to the data of hares and lynxes and third, to show through a simulation study the effect of the error of the numerical method used to solve the ODE on the inference of parameters and prediction of state variables.

목차

Abstract
1. Introduction
2. Main considerations to make Bayesian uncertainty quantification of ODE
3. Application in the Lotka-Volterra equations
Conclusions
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

최근 본 자료

전체보기

댓글(0)

0