메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
정해창 (국립목포해양대학교)
저널정보
한국유체기계학회 한국유체기계학회 논문집 한국유체기계학회 논문집 제28권 제2호(통권 제149호)
발행연도
2025.4
수록면
64 - 72 (9page)
DOI
10.5293/kfma.2025.28.2.064

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
End-line flame arresters for marine applications are installed at the ends of pipelines connected to storage tanks to prevent flashback. To ensure the operation of these flame arresters, the structural design of the flame-quenching element and the main body was categorized into integrated and separated models. A numerical analysis model employing porous media was established to develop flame arresters that satisfy the conditions of international standards. In the numerical analysis model, a porosity of 0.4647 was applied, and the shape factors in the Ergun equation were used to set the viscous and inertial resistance coefficients as boundary conditions. The performance of the flame-quenching element was evaluated based on the flame's temperature distribution. The integrated model's temperature was indicated to be relatively higher than that of the separated model, leading to flame mixing and flashback. Additionally, a prototype was manufactured to validate the reproducibility of the flame arrester model, and an endurance burning test was conducted. During the test, the protected side temperature of the integrated model rapidly increased to approximately 800 °C, resulting in flashback and thermal deformation. The results of the numerical analysis model and the prototype showed similar trends, confirming the reliability of the numerical model essential for flame arresters. The flame-quenching performance evaluation model developed in this study is expected to contribute to the future development of flame arresters.

목차

ABSTRACT
1. 서론
2. 화염방지기의 구조 설계
3. 연구방법
4. 결과 및 고찰
5. 결론
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

최근 본 자료

전체보기

댓글(0)

0