메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
신기원 (Korea University) 김성현 (Hyundai Motor Company)
저널정보
한국소음진동공학회 한국소음진동공학회논문집 한국소음진동공학회논문집 제35권 제2호(통권 283호)
발행연도
2025.4
수록면
145 - 155 (11page)
DOI
10.5050/KSNVE.2025.35.2.145

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
This study presents a deep learning-based method to detect driver stress from a single electrocardiogram (ECG) signal. Driver stress is a significant contributor to traffic violations and accidents, impairing driver concentration, judgment, and reaction time, thereby leading to aggressive driving and poor decision-making. Real-time detection and management of driver stress are crucial for enhancing road safety and improving drivers’ overall health. Existing approaches for detecting driver stress using multimodal biosignals require various types of sensors, which presents practical challenges in terms of cost and complexity when applied in real vehicles. To address the limitations of existing methods, the proposed approach integrates a DenseNet-based 1D convolutional neural network (CNN) model with state-of-the-art attention mechanisms, including dual-channel attention mechanism (DCAM) and deep reinforcement fine-tuning (DeepRFT). The preprocessing phase includes baseline removal, normalization and data augmentation, with model evaluation conducted using the leave-one-out technique. The results indicate that models using attention modules achieved the highest accuracy and F1-scores, surpassing traditional methods in identifying stress states such as rest, low stress and high stress. Specifically, the DCAM-based model achieved an average accuracy of 86.2 % and an F1-score of 83.5 %, showing a significant improvement over baseline models. These findings suggest that ECG-based stress detection can enhance driver assistance systems, contributing to proactive stress management and safer driving environments.

목차

ABSTRACT
1. 서론
2. 연구 방법
3. 실험 결과 및 분석
4. 결론
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0