메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학위논문
저자정보

마창민 (수원대학교, 수원대학교 대학원)

발행연도
2013
저작권
수원대학교 논문은 저작권에 의해 보호받습니다.

이용수0

표지
AI에게 요청하기
추천
검색

이 논문의 연구 히스토리 (6)

초록· 키워드

오류제보하기
In this study, face recognition system is realized with the aid of optimized pRBFNNs focused on hybrid data fusion & 3D recognition base. The recognition rate of existing face recognition systems is usually affected by the change of image factors such as position, scale, backgrounds and pose. Here the face region information obtained from the detected face region is used to compensate for these defects.
The proposed hybrid data fusion method is designed based on two-dimensional imaging techniques by using AdaBoost and the Active Shape Model(ASM) algorithm. The preprocessing part of hybrid data fusion method is given as follows. First, CCD camera is used to obtain a picture frame directly. By using histogram equalization method, the quality of distorted image is enhanced from the influence of natural and artificial illumination.
Second, AdaBoost algorithm is used for the detection of face image between face and non-face image area, and then the contour line and shape of face are extracted by handling ASM. Third, PCA and LDA fusion algorithms are handled to reduce the face image information of high-dimension to that of low-dimension.
In addition, research concerning face image acquisition, preprocessing, feature extraction and recognition was carried out by using 3D scanner to overcome the limitation of face recognition based on two-dimensional image. The preprocessing part of 3D face recognition is given as follows. Facial shape is obtained by using 3D scanner and the pose of distorted facial shape is compensated to the front shape and then depth information of face is extracted through semicircle-based multi-point signature method.
In the recognition part, the Polynomial-based Radial Basis Function Neural Networks(pRBFNNs) is designed to carry out face recognition. The structure of the proposed pRBFNNs consists of three modules of condition, conclusion, and inference phases. The input space of the condition phase is divided by using Fuzzy C-means(FCM) and the local area of the conclusion phase is represented as four types of polynomial functions. The coefficients of connection weights are estimated by Least Square Estimation(LSE) method. The final output of inference phase is obtained through fuzzy inference method. The performance of the proposed RBFNNs is improved by generating nonlinear discriminant function in the output space due to the fuzzy inference mechanism of polynomial-based structure. The essential parameters of the proposed model such as polynomial order type, the number of rules, and fuzzification coefficient are optimized by means of Differential Evolution(DE) as well as Particle Swarm Optimization(PSO).
Real-time face recognition system is designed and the performance of the proposed hybrid data fusion-based face recognition algorithm is evaluated by using yale dataset and IC&CI Lab dataset. Also, the performance of 3D face recognition algorithm is evaluated with the aid of IC&CI Lab dataset.

목차

Ⅰ. 서 론 1
1. 연구 배경 및 목적 1
2. 연구 범위 및 구성 4
Ⅱ. 하이브리드 데이터 융합 기반 얼굴인식을 위한데이터 전처리 6
1. 히스토그램 평활화 6
2. AdaBoost 알고리즘을 이용한 얼굴 이미지 검출 8
3. ASM 기반 하이브리드 얼굴 영역 정보 검출 15 1) 얼굴 형상 모델링 16 2) ASM을 이용한 얼굴 추적 19
4. 얼굴 특징 데이터 차원 축소 기법 20 1) PCA 및 LDA 알고리즘 21 2) PCA와 LDA 융합 알고리즘 27
Ⅲ. 3차원 얼굴인식을 위한 데이터 전처리 29
1. 3차원 얼굴인식 시스템 개요 29
2. 3차원 얼굴 촬영 및 포즈보상 30
3. 3차원 데이터 정보 추출 33
Ⅳ. 얼굴인식을 위한 pRBFNNs 모델 설계 37
1. pRBFNNs 모델 설계 37 1) 일반적인 RBFNNs의 구조 37 2) 제안된 pRBFNNs의 구조 38 3) 패턴분류를 위한 판별함수의 생성 45
2. 최적화 알고리즘을 이용한 pRBFNNs의 최적화 47 1) 차분진화(DE) 알고리즘을 이용한 최적화 47 2) 입자군집최적화(PSO) 알고리즘을 이용한 최적화 51
Ⅴ. 얼굴인식 시뮬레이터 구현 및 실험 결과고찰 53
1. 하이브리드 데이터 융합 얼굴인식 시뮬레이터 구현 53 1) 하이브리드 방식을 이용한 얼굴인식 실험 53 2) 하이브리드 기반 얼굴인식 시뮬레이터 구현 64
2. 3차원 얼굴인식 실험 66
Ⅵ. 결론 및 향후 연구과제 74
참 고 문 헌 76
ABSTRACT 81

최근 본 자료

전체보기

댓글(0)

0