메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학위논문
저자정보

고광수 (울산대학교, 울산대학교 대학원)

지도교수
안형택
발행연도
2014
저작권
울산대학교 논문은 저작권에 의해 보호받습니다.

이용수0

표지
AI에게 요청하기
추천
검색

이 논문의 연구 히스토리 (4)

초록· 키워드

오류제보하기
Free surface problems are important in naval architecture and marine engineering since all of ships and offshore structures, except for submarines, are located at free surface. Free surface problems are complex and difficult to analyze, especially at slamming and sloshing problems. So, these problems take long time to simulate and we must reduce the simulation time to efficiently analyze. The most time consuming part of CFD simulation, about 90%, is to solve a system of linear equations, in this study pressure poisson equation. To solve a pressure poisson equation efficiently, the preconditioned conjugate gradient method and parallel computing programming method, namely Open-MP, are utilized. To verified this study, we compared the convergence history with respect to solver of a system of linear equations such as PCG(Preconditioned Conjugate Gradient), SOR(Successive Over Relaxation) and Gasuss-Seidal Method. This paper describes importance of solver of a system of linear equations in CFD simulations. Futhermore, to verified the result of CFD simulations, several experiments and verified CFD simulations are employed.

목차

ABSTRACT ..................................................................................... i
ACKNOWLEDGEMENT ............................................................... ii
TABLE OF CONTENTS ............................................................... iii
LIST OF FIGURES ........................................................................ v
1 INTRODUCTION
1.1 Free Surface Problems ................................................................ 7
1.2 A System of Linear Equations .................................................. 8
1.3 Parallel Computing Programming .............................................. 9
2 Algorithms
2.1 Governing Equations ................................................................... 10
2.1.1 Variable Arrangement on Cartesian Mesh
2.1.2 CIP-CSL Method
2.1.3 VSIAM3
2.2 Preconditioned Conjugate Gradient Method ............................. 16
2.2.1 Symmetric Positive Definite Matrix
2.2.2 Steepest Descent Method
2.2.3 Conjugate Gradient Method
2.2.4 Preconditioning
2.2.5 Application
2.3 Volume of Fluid Method ........................................................... 23
2.4 Immersed Boundary Method ..................................................... 25
3 Simulation Results
3.1 Hydrostatic Pressure Problems .................................................. 27
3.2 Dam-Breaking Problems ............................................................ 30
3.3 Dam-Breaking Problems with Obstacle ................................... 35
3.3.1 Cylindrical Obstacle
3.3.2 Rectangular Obstacle
4 Conclusion
4.1 Results and Discussion .............................................................. 41
4.2 Future Scope ............................................................................... 42
REFERENCES

최근 본 자료

전체보기

댓글(0)

0