메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학위논문
저자정보

이재만 (부산대학교, 부산대학교 대학원)

지도교수
김선종
발행연도
2014
저작권
부산대학교 논문은 저작권에 의해 보호받습니다.

이용수2

표지
AI에게 요청하기
추천
검색

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
We can often see the trees in the park or roadside, and you don''t know species of the tree. But, kindly name tag attached. Also In nature we don''t know the species of trees. Tree consists of leaves, flowers, bark and etc, and them species is determined by visual observation. In addition, the bark can be observed in spring, summer, fall and winter all of seasons. Also, damage due to changes in the growth process is small. Because of these benefits, the bark is suitable for classification. So, to improve the performance of the classifier system, effective classification system model is required. If you are interested in Landscape Trees proposed model will be a good reference. In this paper, using effective weighted model, improve the performance of trees classification. This model is simple and easy to implement and provides high performance.
Texture feature extraction methods, wavelet both GLCM is used. First of all, wavelet transform is applied to the input image. Next, the GLCM was applied to each area of the wavelet image. In addition, GLCM texture feature of showing high performance in the 6 kinds is used in the proposed model and the images used in the experiment were collected by the author of this paper. The results of experiments on 35 species, When using a single texture features showed 59%. On the other hand, When applying the proposed model, the performance of 88.57% was obtained.
In conclusion, better performance than the conventional methods show and easy-to-implement advantage. If you applied this method, the application may be obtained high performance.

목차

1. 서 론 5
2. 관련연구 7
2.1 웨이브릿 변환(DWT:Discrete Wavelet Transform) 7
2.2 GLCM(Gray Level Co-occurrence Matrix) 10
2.3 수피의 질감 추출 15
2.3.1 웨이브릿 에너지를 이용한 질감 추출 15
2.3.2 웨이브릿과 GLCM을 혼합한 질감 추출 17
2.3.3 웨이브릿의 최적 파라미터 추출 19
2.3.4 GLCM의 최적 파라미터 추출 23
2.3.5 성능 비교 25
3. 효과적인 수피 분류를 위한 질감의 가중치를 이용한 방법의 제안 28
4. 실험결과 및 고찰 33
5. 결 론 43
참고문헌 44
Abstract 47
감사의 글 49

최근 본 자료

전체보기

댓글(0)

0