메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학위논문
저자정보

김지은 (충북대학교, 충북대학교 대학원)

지도교수
이인성
발행연도
2014
저작권
충북대학교 논문은 저작권에 의해 보호받습니다.

이용수2

표지
AI에게 요청하기
추천
검색

이 논문의 연구 히스토리 (3)

초록· 키워드

오류제보하기
There has been a tremendous growth using digital multimedia in the last two decades. Speech and audio contents have always been an integral part of multimedia. The exponential growth in demand for digital audio has created requirements for high fidelity content as the communication network are growing. Consequently, Digital multimedia has lead to several international standards for speech and audio convergence codecs such as AMR-WB+ codec.
Speech codecs are based on vocal tract modeling for redundancy removal using a technique called Linear Predictive Coding. The human vocal tract is modeled as a time varying filter. The parameters of the filter are transmitted or stored. Speech codecs are highly effective for single speaker material with the signals sampled at 8 kHz or 16 kHz. Their round-trip algorithmic delay less than 30 ms to make codecs useful for full-duplex communications purposes. On the other hand, audio codecs achieve compression by exploiting the perceptual redundancies present in the audio signal. This perceptual redundancy is due to the limitations of the human auditory system.
The convergent codec of speech codec and audio codec based on different coding algorithm are hard to converge using unified coding algorithm completely. Recently, in the field of mobile communication, multi mode codec has been standardized for handle to signals of different characteristics between speech and audio.
In this paper, a novel approach is proposed to improve the performance of audio/speech classification using MFCC based on GMM probability model used for the Media Classification System.
By using the Open-loop and use storage buffer using the correlation with the past frame not only reduces the amount of calculation existing but also the signal enhanced accuracy of the classification. In particular, it was found to show improved performance in the music signal such as Castanet and symbols are not good signal classification of common USAC. The performance of the proposed classification algorithm using MFCC feature vector and storage buffer was reduced the error rate about 10% and Computational complexity was also reduced.
The simulation results show that the performance of the proposed signal classifier algorithm has better performance than the conventionally implemented USAC scheme.

목차

I. 서 론 1
II. 음성부호화기의 동향 3
2.1 음성코덱과 오디오코덱의 차이점 3
2.2 음성/오디오 합성신호 코덱의 특징 6
III. 기존 통합 코덱의 신호 분류 11
3.1 시간 영역 기반의 특징 11
3.2 주파수 영역 기반의 특징 15
Ⅳ. GMM기반의 음성,오디오 통합코덱 신호 분류기 22
4.1 기존 USAC의 신호 분류 방법 22
4.2 기존 USAC의 신호 분류의 문제점 26
4.3 제안하는 GMM기반 신호 분류 알고리즘 28
V. 실험결과 41
5.1 객관적 평가 42
VI. 결 론 51
참고문헌 52

최근 본 자료

전체보기

댓글(0)

0