메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학위논문
저자정보

예병효 (부경대학교, 부경대학교 대학원)

지도교수
윤정인
발행연도
2015
저작권
부경대학교 논문은 저작권에 의해 보호받습니다.

이용수5

표지
AI에게 요청하기
추천
검색

이 논문의 연구 히스토리 (3)

초록· 키워드

오류제보하기
In this paper, 20kW Ocean Thermal Energy Conversion(OTEC) with vapor-vapor ejector is proposed. vapor-vapor ejector is to increase pressure as like pump without electricity. By installing the vapor-vapor ejector in system, the needed working fluid rate and evaporation capacity are less than not installing. And then, The system efficiency of OTEC is better than not. The performance analysis is conducted for optimizing the system with HYSYS simulation program. The procedure of performance analysis includes outlet pressure of high turbine, the mass flow ratio of working fluid at separator and nozzle diameters of vapor-vapor ejector. When the nozzle diameters of vapor-vapor ejector are varied properly, the performance of vapor-vapor ejector is highest. After optimizing this proposed OTEC system with ejector, the increasing rate of efficiency of proposed OTEC system with ejector is about 15% comparing with basic OTEC system. From these results, It is necessary to set the pressure ratio, mass flow ratio, nozzle diameters in ejector to increase the efficiency of proposed OTEC system. Additionally, in this study, 12 refrigerants were selected for performance comparison. 12 refrigerants applied to proposed OTEC system and were optimized in system. And the results of performance comparison are system efficiency, APRe, APRc, TPP and mass flow rate of working fluids, pressure recovery rate of ejector. In case of system efficiency, R134a is the highest efficiency among 12. But, in case of APRe and APRc, R744 is the optimized to minimize the size of heat exchangers. In TPP, R717 is the most suitable to decrease the comsumption of pump work. And R717 needs the least amount of mass flow rate of working fluids to make 20kW at turbine.
As mentioned above, with respect to factors of performance comparison, the optimized working fluid is different. So It is necessary to select the optimized working fluid which is suitable respectively.

목차

목차 Ⅰ
Abstract Ⅵ
List of figures and tables Ⅵ
Nomenclature Ⅸ
제 1 장 서 론 1
1.1 연구 배경 1
1.1.1 해양온도차 발전시스템 1
1.1.2 해양온도차 발전시스템 기술 동향 2
1.1.2.1 국내동향 2
1.1.2.2 국외동향 5
1.2 종래 연구 6
1.3 연구 목적 8
제 2 장 연구관련 기본 이론 9
2.1 해양온도차 발전시스템의 종류 9
2.1.1 밀폐형 해양온도차 발전시스템 9
2.1.2 개방형 해양온도차 발전시스템 10
2.1.3 혼합형 해양온도차 발전시스템 11
2.1.4 재생식 랭킨 사이클 12
2.1.5 Kalina 사이클 13
2.1.6 Uehara 사이클 15
2.2 이젝터 16
2.3 열역학 모델식 18
2.3.1 상태방정식 18
2.3.2 상태방정식 선정 19
2.4 작동유체의 종류 및 특성 21
제 3 장 이젝터와 분배기를 이용한 해양온도차 발전시스템 23
3.1 본 시스템의 소개 및 특징 23
3.2 성능분석 27
3.2.1 고단터빈의 출구압력 변화 30
3.2.2 분배기의 유량비 변화 33
3.2.3 증기-증기 이젝터의 노즐구경 변화 36
3.3 결론 41
제 4 장 작동유체 별 증기-증기 이젝터용 해양온도차 발전시스템의 성능 비교 42
4.1 성능비교 42
4.2 결과 및 고찰 44
4.2.1 시스템 효율 비교 44
4.2.2 APRe 46
4.2.3 APRc 48
4.2.4 TPP 50
4.2.5 필요 작동유체 유량 비교 52
4.2.6 이젝터 압력 회복률과 효율 증가율 54
4.2.7 성능분석 결과표 57
제 5 장 결 론 59
참고문헌 62
감사의 글 65

최근 본 자료

전체보기

댓글(0)

0