메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학위논문
저자정보

김경훈 (경북대학교, 경북대학교 대학원)

지도교수
박성배
발행연도
2015
저작권
경북대학교 논문은 저작권에 의해 보호받습니다.

이용수2

표지
AI에게 요청하기
추천
검색

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
Authorship identification is a task to identify the authorship of an anonymous text. It first analyzes given the text and the tries to find the authorship from authorship candidates. In order to analyze the text well, most of previous studies have developed useful linguistic features. Especially, they only focused on formal texts such as novel and journal.
Recently, people have written articles to express their opinions on the web. Therefore, the authorship identification for web text is also emerged. However, the previous studies are not directly applied to this task because the linguistic features only designed for the formal text are not suitable for the text written on web board.
This paper proposes various features for identifying authorship of an anonymous text written on the web board. Unlike the formal text, the text on the web board is influenced by author life patterns. For example, one person mainly writes a text at day time, on the other hand, the other person mostly writes a text at Sunday night. That is, the written time and day of week are important features to identify the web text authorship. In addition, web text contains lots of socio-linguistic characters such as emoticons and character repetitions. Since they reflect the style of author writing, they should be considered when we analyze the web text. Therefore we add the emoticons and character repetitions features. Finally, the proposed method combines not only these features but also the lexical features such as length of tokens and topic distribution that are useful to identify the authorship. According to the experimental results on a real data set, the proposed features are proved to be effective in identifying the authors. Furthermore, the method with the combination of the all features shows the best performance.

목차

Ⅰ. 서론 1
Ⅱ. 관련 연구 6
Ⅲ. 다중 아이디 식별 10
3.1 다중 아이디 식별을 위한 자질 12
3.2 분류 모델 22
Ⅳ. 실험 및 평가 25
4.1 실험 데이터 25
4.2 실험 설정 26
4.3 실험 및 결과 28
Ⅴ. 결론 및 향후 연구 39
참고 문헌 40
영문초록 44

최근 본 자료

전체보기

댓글(0)

0