메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학위논문
저자정보

박종주 (대전대학교, 대전대학교 대학원)

지도교수
박영성
발행연도
2015
저작권
대전대학교 논문은 저작권에 의해 보호받습니다.

이용수1

표지
AI에게 요청하기
추천
검색

이 논문의 연구 히스토리 (4)

초록· 키워드

오류제보하기
Al2O3, sand, Ti system, Cr, ZrO2 and zeolite system were investigated as a candidate for N2O decomposition, where some zeolite substances showed 100% of N2O conversion at 650 ℃ as reaction temperature. Apart from FAU zeolite, BEA, MOR and ZSM-5 ones were stable even at a high temperature of 850 ℃, and thus they were highly applicable to a fluidization bed material for N2O reduction.

Raw materials of zeolite were zeolite B, zeolite M or a mixture of zeolite B and M, which are mixed with organic and inorganic binders to prepare paste for extrusion. The mixing ratios of the raw materials were adjusted to get desired compression strength and bulk density. The final extruded material was active in N2O 100% conversion at the reaction temperature 850℃.

The prepared zeolite bed materials were examined in minimum fluidization velocity (Umf) by cold mode test. The 0.4 mm of sand showed 0.44 m/s of minimum fluidization velocity, 6 mm of zeolite beads needed higher velocity of 2.11 m/s than sand. When 6 mm of zeolite was mixed with sand, it was observed that the fluidization of the mixture was similar to that of sand. In zeolite bed materials size is less than 2 mm, minimum fluidization velocity was below 0.6 m/s, implying that the zeolite materials might be suitable for an application to fluidization incineration.

Fluidization incineration was performed by feeding 10 kg/h of sewage sludge. When sand was used as a bed material, operation conditions were varied in excess air ratio and bed temperature in order to find out stable operation conditions and N2O emission. Sewage sludge in dried powder form was supplied into the bed part. Bed temperature and excess air ratio were adjusted between 850 ℃ to 950 ℃, and 1.2 to 1.7, respectively. As a result, N2O was emitted up to 500 ppm in concentration. On the other hand, the use of zeolite bed materials below 1 mm size could reduce N2O emission to around 100 ppm. Furthermore, when the additional catalyst for N2O decomposition was installed in near freeboard of the incinerator, the N2O concentration in exhaust gas was below i.e. about 50 ppm. As our observation, the used zeolite bed material shows same activity of N2O decomposition, it was revealed that the zeolite bed material could not be affected in the activity under the operation conditions.

목차

목 차 ⅰ
List of figures ⅲ
List of tables ⅶ
Ⅰ. 서 론 1
1. 연구배경 1
2. 연구 목적 및 범위 3
Ⅱ. 이론적 고찰 4
1. 하수슬러지 4
2. 아산화질소(N2O) 4
3. 하수슬러지 발생량 및 처리방법 6
4. 하수슬러지의 소각 처리시 N2O 발생과 저감 기술 9
4.1. 하수슬러지의 소각 처리시 N2O 발생 9
4.2. 하수슬러지의 소각 처리시 N2O 저감 기술 10
Ⅲ. 실 험 11
1. N2O 저감용 유동매체 물질 11
2 건조 하수슬러지 성분분석 12
3. 실험장치 15
3.1 활성 측정 시스템 15
3.2 구형 유동매체 성형장치 16
3.3 Cold mode test 17
3.4 10 kg/h 하수슬러지 유동층 소각실험 18
4. 실험조건 및 방법 20
4.1 N2O 분해 활성 실험 20
4.2 제올라이트 유동매체 성형 22
4.3 Cold mode test 22
4.4 10 kg/h 하수슬러지 유동층 소각실험 23
Ⅳ. 결과 및 고찰 26
1. 유동매체 물질선정 26
1.1 N2O 저감 촉매의 번웅 특성 파악 25
1.2 유기바인더 종류에 따른 N2O 분해특성 31
1.3 무기바인더 종류에 따른 N2O 분해특성 33
2. 제올라이트 유동매체 성형 35
2.1 Zeolite B+M의 압출식 1 mm 구형 유동매체 성형 35
2.2 Zeolite B의 압출식 2 mm 구형 유동매체 성형 38
3. 유동층 소각 실험을 위한 cold mode test 44
4. 10 kg/h 하수슬러지 유동층 소각실험 51
4.1 유동층 소각로 내 발생 가스분포 51
4.2 과잉공기비에 따른 소각로 내 가스영향 53
4.3 소각로 온도변화에 따른 가스영향 60
4.4 유동매체의 종류에 따른 가스영향 62
4.5 소성온도에 따른 가스영향 64
4.6 유동층의 높이에 따른 가스영향 66
4.7 유동층 내 촉매 비율에 따른 가스영향 69
Ⅴ. 결 론 71
References 73
Abstract 77

최근 본 자료

전체보기

댓글(0)

0