메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학위논문
저자정보

김민선 (서울시립대학교, 서울시립대학교 일반대학원)

지도교수
박창이
발행연도
2015
저작권
서울시립대학교 논문은 저작권에 의해 보호받습니다.

이용수3

표지
AI에게 요청하기
추천
검색

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
단순 베이즈 분류(Naive Bayes classification)는 출력변수가 주어졌을 때 입력변수들이 조건부 독립이라는 가정에 기반한다. 단순 베이즈 가정은 비현실적이지만 고차원의 확률 추정 문제를 일련의 일차원 확률 추정 문제로 단순화 시킨다는 장점이 있으며, 특히 스팸 메일 필터링, 추천 시스템(recommendation system) 등 방대한 데이터를 다루는 분야야에서 흔히 사용된다. 본 논문에서는 입력변수와 출력변수간의 카이제곱 통계량에 기반한 변수선택법을 제안한다. 이 방법은 단순 베이즈 분류의 장점인 데이터 처리 및 계산의 단순성을 유지하면서도 설명력이 있는 변수를 선택할 수 있으며 SNP(single nucleotide polymorphism)에 의한 질병의 분류 등의 초고차원 혹은 빅데이터에서 유용할 것으로 기대된다.

목차

제1장 서론 1
제2장 입력변수의 선택 4
제1절 기호및 기본개념 4
제2절 변수선택법 6
제3장 데이터 분석 8
제1절 모의실험 8
제2절 실제데이터 10
제4장 결론 15
참고 문헌 17
Abstract 19
감사의 글 20

최근 본 자료

전체보기

댓글(0)

0