메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학위논문
저자정보

최윤호 (충남대학교, 忠南大學校 大學院)

지도교수
김홍집
발행연도
2015
저작권
충남대학교 논문은 저작권에 의해 보호받습니다.

이용수3

표지
AI에게 요청하기
추천
검색

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
Combustion instability is a well-known phenomenon which takes place in a closed chamber such as a combustion chamber of rockets. This phenomenon should be studied consistently because it can have a serious damage on the combustion chamber and engine system.
Acoustic cavity has been widely used as a stabilization device to suppress the combustion instability. Damping capacity of acoustic cavity has been elucidated according to various geometric shapes. A Rijke tube facility has been used which can simulate interaction heat and acoustic field very simply.
The damping capacity for various changes in orifice diameter and orifice length and the number of the acoustic cavity was experimentally evaluated. Acoustic cavities having large orifice area showed better damping capacity. But, in case of orifice length, the longer orifice length above a certain value makes cavity volume and resultant acoustic stiffness too smaller, so damping capacity was decrease above this threshold-like specific length. As for the number of cavities, damping capacity increases with the number, but, in a certain number or more, the significant increase of the damping capacity was not observed. As for acoustic cavities which were thought to have large damping capacity, decay time has been measured to quantify the damping capability in time domain. Effects of orifice area on decay time was much higher than those of orifice length.
Results from heat-acoustic field interaction through Rijke tube shows that the pure acoustic approach would not be sufficient for the fine tuning of acoustic cavity and further combustion tests would also be necessary to optimize the shape and number of the cavity for optimal design acoustic cavity.

목차

Ⅰ. 서 론 1
1.1 연구 배경 1
1.2 연구 목적 및 필요성 2
Ⅱ. 이론적 배경 4
2.1 Rijke Tube 4
2.1.1 Rayleigh 기준 6
2.2 연소불안정 제어 9
2.2.1 음향공 10
Ⅲ. 실험장치 및 실험방법 13
3.1 실험장치 13
3.1.1 연료공급부 및 열원부 14
3.1.2 Rijke Tube 17
3.1.3 음향공 및 Orifice 21
3.1.4 데이터수집 및 제어 25
3.2 실험방법 28
Ⅳ. 실험결과 및 분석 30
4.1 Rijke Tube 공진 주파수 30
4.2 음향공 감쇠 특성 비교 31
4.2.1 Orifice의 직경(면적)에 따른 감쇠 능력 비교 32
4.2.2 Orifice의 길이에 따른 감쇠 능력 비교 34
4.2.3 음향공의 개수에 따른 감쇠 능력 비교 37
4.3 완전 감쇠 영역 음향공의 Decay Time 비교 40
Ⅴ. 결론 44
Ⅵ. 참고문헌 46
ABSTRACT 48

최근 본 자료

전체보기

댓글(0)

0