메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학위논문
저자정보

김진모 (한국산업기술대학교, 한국산업기술대학교 산업기술경영대학원)

지도교수
이종길
발행연도
2016
저작권
한국산업기술대학교 논문은 저작권에 의해 보호받습니다.

이용수1

표지
AI에게 요청하기
추천
검색

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
Since 2000, Europe has studied the railway vehicle crash safety standards.
TSI was defined based on the collision safety of a train that must satisfy the requirement for an operation in the European. In Korea, standards for safety of railway vehicles are implemented to meet the collision safety performance at the specified speed to the vehicle classification.
Therefore, to be applied to the large-capacity energy absorber between the vehicles to the safety performance of a collision condition, the energy-absorbing capacity is specified by a crash simulation. Current was applied to the national railway vehicle impact energy absorbing device to the rubber buffer or hydraulic shock absorber on the vehicles front end.
However, the hydraulic shock absorber has different characteristic curves that are generated according to the speed and configuration conditions of the vehicles which are caused by a phenomenon that has speed-dependent fluid properties. In the case of using the deformation of the tube. This will have little impact on the speed due to the use plastic deformation of the material. In particular deformations of energy absorbance. This is used extensively for vehicle combinations medium. But most deformation tubes are applied to domestic products by foreign technology. The core of the tube is designed to maintain a constant Deformation Reaction force to the compression displacement. The displacement and Reaction force is determined by the energy absorbing capacity. Contact between the tube and the punch is due to the compression action which generates friction and tube expansion that is represented as a reaction.
In particular, the tube thickness and punch the contact angle can see the tendency to force change through the design elements of variable adjustment. Analysis by the models and variables calculated in accordance with the conditions through a result of the graphical model. The test results may confirm the inclination based on a specific parameter.
By arranging the change of the reaction force due to a specific variable continuously, confirms the trend by comparing the model. Trends are the basis for determining the degree to which the variable contributes to energy absorption and the data of the design to increase the energy absorption efficiency of the same model. Analysis was conducted based on the model using the ABAQUS finite element analysis program, and compared with the actual test results. Test models were made in the same shape as the FE model.

목차

표 목 차 ⅰ
그림목차 ⅱ
기호설명 ⅵ
ABSTRACT ⅶ
1 . 서론 1
1.1 연구배경 1
1.2 연구기초 및 문헌조사 4
1.2.1 변형튜브 기초 4
1.2.2 변형튜브에 관한 연구 5
1.3 연구목적 및 범위 8
2 . 이론분석 9
2.1 응력-변형률 곡선의 단순화 9
2.2 초등해법 이론 소개 12
2.3 싱킹 13
2.4 초등해법 이론에 대한 적용 18
3 . 변형튜브의 분석 24
3.1 변형튜브의 소재분석 24
3.2 변형튜브의 유한요소해석 모델 분석 26
3.2.1 튜브 두께모델의 유한요소해석 27
3.2.2 펀치 인입각 모델의 유한요소해석 34
3.3 변형튜브의 시험 모델 분석 41
3.3.1 튜브 두께모델의 시험 42
3.3.2 펀치 인입각 모델의 시험 47
3.4 초등해법 모델 분석 54
3.4.1 튜브 두께모델의 이론 해석 54
3.4.2 펀치 인입각 모델의 이론 해석 59
4 . 결론 63
참고문헌 66

최근 본 자료

전체보기

댓글(0)

0