메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학위논문
저자정보

임명수 (국민대학교, 국민대학교 대학원)

지도교수
김남규
발행연도
2016
저작권
국민대학교 논문은 저작권에 의해 보호받습니다.

이용수3

표지
AI에게 요청하기
추천
검색

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
최근 가용한 텍스트 데이터 자원이 증가함에 따라 방대한 텍스트 분석을 통해 새로운 가치를 창출하고자 하는 수요가 증가하고 있다. 특히 뉴스, 민원, 블로그, SNS 등을 통해 유통되는 글로부터 다양한 이슈를 발굴해내고 이들 이슈의 추이를 분석하는 이슈 트래킹에 대한 연구가 활발하게 이루어지고 있다. 전통적인 이슈 트래킹은 토픽 모델링을 통해 오랜 기간에 걸쳐 지속된 주요 이슈를 발굴한 후, 각 이슈를 구성하는 문서 수의 세부 기간별 분포를 분석하는 방식으로 이루어진다. 하지만 전통적 이슈 트래킹은 각 이슈를 구성하는 내용이 전체 기간에 걸쳐 변화 없이 유지된다는 가정 하에 수행되기 때문에, 다양한 세부 이슈가 서로 영향을 주며 생성, 병합, 분화, 소멸하는 이슈의 동적 변이과정을 나타내지 못한다. 또한 전체 기간에 걸쳐 지속적으로 출현한 키워드만이 이슈 키워드로 도출되기 때문에, 핵실험, 이산가족 등 세부 기간의 분석에서는 매우 상이한 맥락으로 파악되는 구체적인 이슈가 오랜 기간의 분석에서는 북한이라는 큰 이슈에 함몰되어 가려지는 현상이 발생할 수 있다. 본 연구에서는 이러한 한계를 극복하기 위해 각 세부 기간의 문서에 대한 독립적인 분석을 통해 세부 기간별 주요 이슈를 도출한 후, 각 이슈의 유사도에 기반하여 이슈 흐름도를 도출하고자 한다. 또한 각 문서의 카테고리 정보를 활용하여 카테고리간의 이슈 전이 패턴을 분석하고자 한다. 본 논문에서는 총 53,739건의 신문 기사에 제안 방법론을 적용한 실험을 수행하였으며, 이를 통해 전통적인 이슈 트래킹을 통해 발굴한 주요 이슈의 세부 기간별 구성 내용을 살펴볼 수 있을 뿐 아니라, 특정 이슈의 선행 이슈와 후행 이슈를 파악할 수 있음을 확인하였다. 또한 카테고리간 분석을 통해 단방향 전이와 양방향 전이의 흥미로운 패턴을 발견하였다.

목차

1. 서론 1
2. 관련 연구 5
3. 텍스트 마이닝 기반 고객 세분화 방법론 8
3.1. 연구 범위 8
3.2. 기간별 이슈 매핑 9
3.3. 이슈별 카테고리 식별 12
3.4. 이슈 흐름도 기반의 주요 분석 시나리오 15
4. 실험 및 결과 19
4.1. 실험 개요 19
4.2. 이슈 흐름도 도출 19
4.3. 이슈 흐름도 기반 주요 분석 결과 22
5. 결론 31
참고문헌 33
Abstract 37

최근 본 자료

전체보기

댓글(0)

0