메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학위논문
저자정보

Krithika Vyasaprasath (부산대학교, 부산대학교 대학원)

지도교수
Jeong Yeol Choi
발행연도
2016
저작권
부산대학교 논문은 저작권에 의해 보호받습니다.

이용수2

표지
AI에게 요청하기
추천
검색

이 논문의 연구 히스토리 (4)

초록· 키워드

오류제보하기
The present study represents the simulation of a hybrid Reynolds-averaged Navier Stokes / Large Eddy Simulation (RANS/LES) based on detached eddy simulation (DES) for a Burrows and Kurkov supersonic planar mixing experiment. The preliminary simulation results are checked in order to validate the numerical computing capability of the current code. Mesh refinement studies are performed to identify the minimum grid size required to accurately capture the flow physics. A detailed investigation of the turbulence/chemistry interaction is carried out for a nine species 19-step hydrogen-air reaction mechanism. In contrast to the instantaneous value, the simulated time-averaged result inside the reactive shear layer underpredicts the maximum rise in H2O concentration and total temperature relative to the experimental data. The reason for the discrepancy is described in detail.
Further, this study focus on the factors affecting the reaction zone of the supersonic planar mixing combustor. Factors such as variation in wall temperature, boundary layer and the measure of unmixedness is computed and compared with the adiabatic wall temperature cases,
for better understanding of the physics behind the reaction zone. It is found that the ignition delay distance and pre-ignition greatly depend on the incoming boundary layer temperature,corresponds to the fixed temperature of the wall. Combustion parameters such as OH mass fraction, flame index, scalar dissipation rate, and mixture fraction are analyzed in order to study the flame structure.

Key words: Hybrid LES/RANS, supersonic combustion, turbulence/chemistry interaction, planar
mixing, flame structure.

목차

Introduction 1
1.1 Numerical Simulation of Turbulent Combustion in Scramjets . . . . . . . . . . . . . . . . 2
1.1.1 Previous Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Flow field of Supersonic Planar Reacting Wall Jet . . . . . . . . . . . . . . . . . . . . . . 3
1.2.1 Burrows and Kurkov Experimental setup . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Thesis Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2 Governing Equation and Numerical Approach 6
2.1 Governing Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Thermochemical Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Turbulence Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4 Detached- Eddy Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3 Computational Grids, Boundary Condition and Initial Condition 12
4 Results and Discussion 15
4.1 Scheme Comparison and Mesh Refinement Study . . . . . . . . . . . . . . . . . . . . . . . 15
4.2 Reactive flow case simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.2.1 Analysis of preliminary results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.3 Non-reactive flow simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.4 Factors Affecting Reaction Zone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.4.1 Reaction Zone Temperature Sensitivity Analysis . . . . . . . . . . . . . . . . . . . 24
4.4.2 Incoming Boundary Layer Temperature Sensitivity Analysis . . . . . . . . . . . . . 25
4.5 Turbulence/chemistry interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.6 Implications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5 Conclusion 33

최근 본 자료

전체보기

댓글(0)

0