메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학위논문
저자정보

Md. Aktaruzzaman (강릉원주대학교, 강릉원주대학교 일반대학원)

지도교수
김병섭
발행연도
2016
저작권
강릉원주대학교 논문은 저작권에 의해 보호받습니다.

이용수5

표지
AI에게 요청하기
추천
검색

이 논문의 연구 히스토리 (4)

초록· 키워드

오류제보하기
Phytophthora infestans의해 발생되는 감자역병은 국내뿐만 아니라 전세계적으로 감자 생산량을 저해하는 가장 치명적인 병중 하나이다. 저항성품종의 부족으로 인해, 화학적방제는병을 방제하는데 있어서 여전히 주요한 방법이다. 적절한 살포시기와 살포횟수의 감소는 감자역병 방제에 있어 매우 중요하다. 본 연구의 목적은 2013년부터 2015년 감자재배시 국내 강원도 고랭지지역에서 감자역병의 전염을 방제체계를 위한 서로 다른 살균제 방제력을 평가하기 위한 것이다. 2013에 18개, 2014에 10개, 2015에 11개의 방제력을 2개의 상업적 감자품종인 두백과 수미를 사용하여 실험을 수행하였다. 7일과 10일간격으로 만코제브, 디메토모르프, 플루아지남, 클로로타리닐, 아미설브롬, 사이조파미드, 파목사돈, 사이목사닐+만디프로파미드의 총 8종의 살균제 제형을 추천농도로 사용하였다. 2013년 살균제적용은 재배초기에 처리하였고, 2014년과 2015년에는 감자역병 발생예찰모델(BLITECAST system)에 따라 축적 누적되는 발병도값(accumulation cumulative disease severity value (CDSV))이 18 초과하였을 때 시작하였다. 이 예찰모형에 따르면 역병의 첫발생은 18 정도값이 축척되면 그 후 7-14일에 발생하는 것이 예상된다. 그렇지만 농부들은 SV값이 2014년 2015년 각각 18이 지속되기도 전에 이미 1~2회 농약을 살포하였다. 역병의 정도는 발병된 잎을 기반으로하여 측정하였다. 2013년에 각각 7일간격, 사이조파미드-사이조파미드-디메토모르프-디메토모르프- 이목사닐+만디프로파미드와 7일간격으로 파목사돈-파목사돈-디메토르므프-사이목사닐+만디프로파미드의 2개의 방제력을 통해 가장 낮은발병도(23.7%, 30,7%), AUDPC(242.9, 315,9), rAUDPC(0.09, 0.12)를 두백과 수미품종에서 보였다. 2014년에 7일간격으로 파목사돈-파목사돈-디메토르므프-디메토모르프-사이목사닐+만디프로파미드의 방제력을 통해 두개 품종 모두에서 가장낮은 발병도(5.8%, 6.3%), AUDPC (67.9, 77.0), rAUDPC (0.02, 0.03)를보였다. 2015년에 7일간격, 파목사돈-파목사돈-디메토모르프-디메토모르프-사이목사닐+만디프로파미드의 방제력을 통해 두개 품종 모두에서 가장 낮은 발병도(1.3%, 5.2%), AUDPC(28.0, 45.4) rAUDPC(0.013, 0.022)를 보였다.
40개의 직선회귀식을 가지고 critical point models, multiple point models, AUDPC models에 대하여 2년을 결과를 통해 적합한 모델을 선발하였다. 2014년실험의경우, 두개의 품종에서 77 DAP에 감자역병발생량을 이용한 수량감소를 예측하는 critical point models은 두백에서 y= 7.6+1.55X(R2= 0.84), 수미에서 y= 8.88+0.98X(R2= 0.69)이 었다. Multiple point models로 두백은 y= -10.76-80.30V1+5.32V5(R2= 0.84, disease severity), y= -61.30+48.51V7-13.73V9(R2= 0.97, disease increment); 수미는 y= -9.77-7.40V1+0.97V2+3.50V5(R2= 0.95, disease severity), y= 9.46+6.83V6+7.60V7-11.61V9(R2= 0.98, disease increment)이 우수한 예측모델이 었다. AUDPC모델로는 두백은 y= 8.57+0.05X(R2= 0.83), 수미는 y= 11.05+0.03X(R2= 0.64)을 작성하였다. 2015년 실험의 경우 85DAP, 78DAP의 병 발생이 각각 두백과 수미품종의 감자역병에 의한 수량감소를 예측할 수 있는 결정적 시기 였다. Critical point models은 두백에서 y= 3.46+5.45X(R2= 0.63), 수미에서 y= 1.04+9.86X(R2= 0.91)이 우수하였다. Multiple point models은 두백에서 y= -17.59+36.72V1+13.11V2-1.1V4(R2= 0.98, disease severity), y=14.94+11.71V5+9.45V6-12.08V7(R2= 0.97, disease increment), 수미에서 y= 0.68+68.15V1-26.85V2-0.21V4(R2= 0.98, disease severity), y= 9.46+6.83V6+7.60V7-11.61V9(R2= 0.93, disease increment)이 우수한 예측모델이 었다. AUDPC 모델로 두백에서 y= 9.08+0.02X(R2= 0.47), 수미에서 y= 8.92+0.43X(R2= 0.44)이 작성되었다.
총 167 종의P. infestans를 2013년과 2014년에 국내의 서로 다른 감자재배지역으로부터 감자의 병든잎에서 분리하였다. 분리균 모두는 A1 mating type을 보였고, A2 mating type은 분리되지 않았다. 메탈락실 저항균의 분리빈도는 각각 2013년과 2014년에 4.7%, 4.9%였다. EC50값의 범위는 디메토모르프는 0.08~0.21 μg/ml이며, 만디프로파미드는 0.012~0.032 μg/ml, 만코제브범위는 2.62~22.6 μg/ml, 클로로타로닐는 0.95~6.25 μg/ml, 사이조파미드는 0.01~0.096 μg/ml, 사이목사닐는 0.29~3.15 μg/ml, 파목사돈는 0.27~1.58 μg/ml이 었다. A2 균주들이 포자형성능과 종합적 fitness지수가 A1과 self-fertile균주들보다 높게 나타나 fitness가 높았다. 도란 메탈락실 저항성균주들이 메탈락실 감수성균주들보다 fitness가 높았다. 국내의 서로 다른 지역으로부터 분리된 P. infestans은 27개의 생리적 분화형(race)으로 나타났다. 국내 P. infestans의 race 분화는 다양하고, 분리된 모든 균들은 P. infestans에 대한 저항성유전자인 R1-R7과 R10-R11에 대하여 병원성을 보였지만, R8과 R9에 대하여 비병원성을 보였다.

Potato late blight caused by Phytophthora infestans is one of the most serious threats to commercial potato production in Korea and worldwide. Because of the lack of resistant cultivars, chemical control is still the main measures for disease management. Appropriate times to start spraying and reduce the number of sprays are very important for late blight management. The objective of this research was to evaluate different fungicide spray schedules to manage systemic infections of late blight diseases in Gangwon alpine area of Korea in the 2013 to 2015 growing season. In 2013, eighteen; 2014, ten; and 2015, eleven fungicides spray schedules using commercial formulations and recommended rates of mancozeb, dimethomorph, fluazinam, chlorothalonil, amisulbrom, cyazofamid, famoxadone, cymoxanil + mandipropamid 7 and 10 days interval on two commercial potato cultivars, namely Dubeak and Superior. In 2013, fungicide applications begans early in the growing season but in 2014 and 2015, fungicide application were started when accumulation cumulative disease severity value (CDSV) exceed 18 according to BLITECAST System. According to this system, first occurrence of blight is predicted 7-14 days after 18 severity values have accumulated. As far we know, farmers already 1 time or 2 times sprayed before SV value exceed 18 in 2014 and 2015 respectively. Late blight severity was rated on the basis of the percentage of diseased foliage. In 2013, lowest percent disease severity (23.7% & 30.7 %), AUDPC (242.9 and 315.9) and rAUDPC (0.09 & 0.12) were found in Dubeak and Superior cultivars with the spray schedules of cyazofamid - cyazofamid - dimethomorph - dimethomorph - cymoxanil + mandipropamid in 7 days interval and famoxadone - famoxadone - dimethomorph - dimethomorph - cymoxanil + mandipropamid in 7 days intervals respectively. In 2014, lowest percent disease severity (5.8 & 6.3 %), AUDPC (67.9 and 77.0) and rAUDPC (0.02 & 0.03) were found in both cultivars with the spray schedule of famoxadone - famoxadone - dimethomorph - dimethomorph - cymoxanil + mandipropamid in 7 days interval. In 2015, lowest percent disease severity (1.3 & 5.2 %), AUDPC (28.0 and 45.4) and rAUDPC (0.013 & 0.022) were found in both cultivars with the spray schedule of famoxadone - famoxadone - dimethomorph - dimethomorph - cymoxanil + mandipropamid in 7 days interval.
Forty linear regression lines were fitted with two years data for critical point models, multiple point models and AUDPC models. In case of 2014 experiment, 77 DAP was critical stage for late blight in both cultivars. Critical point models were: for Dubaek y= 7.6+1.55X, R2= 0.84; for Superior y= 8.88+0.98X, R2= 0.69. Multiple point models were: for Duebaek y= -10.76-80.30V1+5.32V5, R2= 0.84 (for disease severity), y= -61.30+48.51V7-13.73V9, R2= 0.97 (for disease increment); for Superior y= -9.77-7.40V1+0.97V2+3.50V5, R2= 0.95 (for disease severity), y= 9.46+6.83V6+7.60V7-11.61V9, R2= 0.98 (for disease increment). AUDPC models were: for Dubaek y= 8.57+0.05X, R2= 0.83; for Superior y= 11.05+0.03X, R2= 0.64. In case of 2015 experiment, 85 DAP & 78 DAP were critical stage for late blight in for Dubaek and Superior cultivar respectively. Critical point models were: for Dubaek y= 3.46+5.45X, R2= 0.63; for Superior y= 1.04+9.86X, R2= 0.91. Multiple point models were: for Duebaek y= -17.59+36.72V1+13.11V2-1.1V4, R2= 0.98 (for disease severity), y= 14.94+11.71V5+9.45V6-12.08V7, R2= 0.97 (for disease increment); for Superior y= 0.68+68.15V1-26.85V2-0.21V4, R2= 0.98 (for disease severity), y= 9.46+6.83V6+7.60V7-11.61V9, R2= 0.93 (for disease increment). AUDPC models were: for Dubaek y= 9.08+0.02X, R2= 0.47; for Superior y= 8.92+0.43X, R2= 0.44.
A total of 167 isolates of P. infestans were isolated from the diseased leaves of potato isolated from different potato growing locations of Korea in 2013 and 2014. All of the isolates were the A1 mating type, no A2 mating type isolates were found. Isolation frequencies of metalaxyl resistant isolates were 4.7%, and 4.9% in 2013, and 2014, respectively. The EC50 values for dimethomorph ranged from 0.08 to 0.21 μg/ml, mandipropamid ranged from 0.012 to 0.032 μg/ml, mancozeb ranged from 2.62 to 22.6 μg/ml, chlorothalonil ranged from 0.95 to 6.25 μg/ml, cyazofamid ranged from 0.01 to 0.096 μg/ml, cymoxanil ranged from 0.29 to 3.15 μg/ml, and famoxadone ranged from 0.27 to 1.58 μg/ml. For fitness components and composite fitness index Lesion areas, sporulation capacity, composite fitness index induced by A2 isolates were higher than A1 and self fertile isolate. And also lesion areas with composite fitness induced by metalaxyl resistant isolates were higher than those by metalaxyl senaitive isolates. The isolates of P. infestans obtained from different location of Korea were determined as 27 physiological races in the experiment and all the races composed of multiple race. Therefore, the physiological races of P. infestans were diverse in Korea, and almost all Korean isolates showed virulence to R1- R7 and R10 - R11 having the resistance gene against P. infestans, but avirulent to R8 and R9.

목차

Introduction 1
Literature review 6
Chapter 1 Fungicide spray schedules for controlling late blight of potato using BLITECAST system. 17
Abstract. 17
1.1 Introduction 18
1.2 Materials and Methods 20
1.2.1 Experimental design and layout 20
1.2.2 BLITECAST system 21
1.2.3 Fungicide spray schedule used in this experiment 22
1.2.4 Estimation of disease severity 29
1.2.5 Area under the disease progress curve (AUDPC) and relative area under the disease progress curve (rAUDPC) 29
1.2.6 Measurement of weather variables 30
1.2.7 Statistical analysis 30
1.3 Results 31
1.3.1 Field results in 2013. 31
1.3.1.1 Effects of spray schedules on diseases severity (%) and disease progress. 31
1.3.1.2 Effects of spray schedules on percent over disease control 37
1.3.1.3 Effects of spray schedules on AUDPC and rAUDPC 39
1.3.2 Field results in 2014. 41
1.3.2.1 Effects of spray schedules on diseases severity (%) and disease progress 41
1.3.2.2 Effects of spray schedules on percent over disease control 46
1.3.2.3 Effects of spray schedules on AUDPC and rAUDPC 48
1.3.3 Field results in 2015 50
1.3.3.1 Effects of spray schedules on diseases severity (%) and disease progress 50
1.3.3.2 Effects of spray schedules on percent over disease control 56
1.3.3.3 Effects of spray schedules on AUDPC and rAUDPC 58
1.4 Discussion 60
Chapter 2 Development of yield loss assessment model for potato late blight disease 63
Abstract 63
2.1 Introduction 64
2.2 Materials and Methods 66
2.2.1 Experimental design and layout 66
2.2.2 Fungicide spray schedule used in this experiment 66
2.2.3 Estimation of disease severity 68
2.2.4 Estimation of yield loss 68
2.2.5 Models for estimating yield loss 68
2.2.6 Data analysis 69
2.3 Results. 70
2.3.1 Effects of spray schedules on diseases severity (%), AUDPC, yield and yield loss (%) of potato due to late blight infection on Dubaek and Superior cultivars in 2014. 70
2.3.2 Critical point models of yield loss (%) by late blight disease severity (%) at various days after planting for Dubaek and Superior cultivars in 2014. 74
2.3.3 Multiple regressions of yield loss model for Dubaek and Superior cultivar based on disease severity (%) and % disease increment at different days after planting in 2014. 76
2.3.4 Actual and estimated loss (%) in potato tuber yield based on multiple regression equation of yield loss (%) and weekly disease increments on Dubaek and Superior cultivars in 2014. 78
2.3.5 Regression models of yield loss (%) by AUDPC for Dubaek and Superior cultivars in 2014. 80
2.3.6 Effects of spray schedules on diseases severity (%), AUDPC, yield and yield loss (%) of potato due to late blight infection on Dubaek and Superior cultivars in 2015. 81
2.3.7 Critical point models of yield loss (%) by late blight disease severity (%) at various days after planting for Dubaek and Superior cultivars in 2015 85
2.3.8 Multiple regressions of yield loss model for Dubaek and Superior cultivars based on disease severity (%) and % disease increment at different days after planting in 2015 87
2.3.9 Actual and estimated loss (%) in potato tuber yield based on multiple regression equation of yield loss (%) and weekly disease increments on disease severity on Dubaek and Superior cultivars in 2015 89
2.3.10 Regression models of yield loss (%) by AUDPC for Dubaek and Superior cultivars in 2015 91
2.4 Discussion 92
Chapter 3 Phenotypic characterization and fungicide sensitivity of Phytophthora infestans isolates obtained in 2013-2014. 96
Abstract. 96
3.1 Introduction. 97
3.2 Materials and Methods 99
3.2.1 Isolation of pathogen 99
3.2.2 Mating type determination of pathogen 100
3.2.3 Fungicide sensitivity and EC50 assays 101
3.2.4 Fitness assessments based on mating type and metalaxyl sensitive, resistant isolate 103
3.2.5 Race identification. 104
3.3 Results 106
3.3.1 Isolates of P. infestans 106
3.3.2 Mating type of P. infestans isolates 107
3.3.3 Sensitivity of P. infestans isolates to metalaxyl fungicide 108
3.3.4 Response to dimethomorph of P. infestans isolates 111
3.3.5 Response to mandipropamid of P. infestans isolates 115
3.3.6 Response to mancozeb of P. infestans isolates 119
3.3.7 Response to chlorothalonil of P. infestans isolates 123
3.3.8 Response to cyazofamid of P. infestans isolates 127
3.3.9 Response to cymoxanil of P. infestans isolates 131
3.3.10 Response to famoxadone of P. infestans isolates 135
3.3.11 Fitness components and composite fitness index based on mating type, metaxyl sensitive and resistant isolates of Phytophthora infestans 140
3.3.12 Physiological race of P. infestans in Korea 143
3.4 Discussion 149
References 155
Summary in English 179
Summary in Korean 183

최근 본 자료

전체보기

댓글(0)

0