메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학위논문
저자정보

김정재 (조선대학교, 조선대학교 대학원)

지도교수
최한철
발행연도
2016
저작권
조선대학교 논문은 저작권에 의해 보호받습니다.

이용수1

표지
AI에게 요청하기
추천
검색

이 논문의 연구 히스토리 (3)

초록· 키워드

오류제보하기
In this study, surface characterization of Mg-doped hydroxyapatite coatings on Ti-25Ta-xHf alloys after plasma electrolytic oxidation(PEO) for dental implants was researched using various experimental instruments. To manufacture the Ti-25Ta-xHf alloys, Ti with 25 wt. % Ta and Hf were prepared and then melted in arc-melting furnace. In order to homogenize for the manufacturing of alloys, these samples were heat treated at 1050 °C for 2 h in an argon atmosphere and then water quenched. Micro-pore was formed by PEO method with various voltages, the reaction was carried out in 2.5 mM Ca(NO3)2?4H2O + 1.5 mM NH4H2PO4 solution. HA and Mg-HA were deposited on the Ti-25Ta-xHf alloys by electrochemical deposition with implement cyclic voltammetry in solution containing various Mg contents. Morphology and structure were researched by field-emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDS), and X-ray diffraction (XRD). Microstructure and chemical composition of coated layer and corrosion properties were characterized by fourier transform infrared spectroscopy (FTIR), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS). In vitro studies were performed with MG63 cell to investigate the effect of biological change on different surface conditions.

The results were as follows:

1. The microstructures of the Ti-25Ta-xHf alloy showed a needle-like and equiaxed structure. The needle-like structure(α''- phase) changed to an equiaxed grain structure(α"-phase) with increase of Hf content to Ti-25Ta-15Hf alloy.

2. The corrosion potential of Ti-25Ta-xHf alloy increased, whereas the corrosion current density decreased, as Hf content increased. Polarization resistance of PEO treated Ti-25Ta-15Hf alloy at 300V was higher than those of non-PEO treated and PEO treated Ti-25Ta-15Hf alloys at 240V and 270V.

3. From the results of surface properties of anodized layer, as applied voltages increased, pore size increased and showed highly ordered distribution. Ca and P ratio increased with increasing anodization voltage and Hf content. PEO treated surface showed the anatase structure with large crystallite size, as applied voltage increased, and microcrack showed in the case of higher applied voltage(300V).

4. The morphology of HA particles showed the rod-like shape on bulk alloys, however, the rod-like shape changed to plate-like shape with increase of Mg content on micro-pore structured Ti-25Ta-xHf alloys. Also, the surface roughness of HA and Mg-HA coatings increased with Mg content.

5. From the cell culture test, cell proliferation and growth on the pore formed and nano-scaled surface increased predominantly compared to the others, especially, 20Mg-HA coatings on the Ti-25Ta-15Hf alloy showed a good cell growth and proliferation.

In conclusion, it is confirmed that Mg-precipitated surface on pore formed surface with nano-scale structure could be served for increasing the osseointegration at interface between bone and implant surface. This process of surface treatment can be applied to improve the implant surface.

목차

LIST OF TABLES ....................................................... ⅲ
LIST OF FIGURES ...................................................... ⅴ
ABSTRACTS ............................................................. ⅹ
제 1 장 서 론 .............................................................. 1
제 2 장 이론적 배경 ...................................................... 4
2.1. 생체용 금속재료의 특성 ........................................... 4
2.2. 티타늄 합금의 특성 ................................................. 8
2.3. 이산화티타늄 ....................................................... 12
2.4. 생체 금속재료 플라즈마 전해산화 표면처리 ............... 16
2.5. 전기화학증착법을 이용한 인산칼슘계 코팅 ................ 19
2.6. 마그네슘 ............................................................. 23
제 3 장 실험재료 및 방법 .............................................. 27
3.1. 시료 준비 ............................................................ 27
3.2. 합금 제조 ............................................................ 27
3.3. 합금의 미세조직 관찰 ............................................ 27
3.4. 플라즈마 전해 산화법(PEO)으로 산화피막 형성 시험 ... 28
3.5. 전기화학증착법으로 마그네슘을 함유한 수산화인회석 형성 시험 ...................................................................... 30
3.6. 표면특성 평가 ...................................................... 31
3.7. 전기화학적 부식 시험 ............................................ 31
3.7.1. 동전위시험 ........................................................ 31
3.7.2. 교류 임피던스 측정 ............................................. 31
3.8. 세포 배양 ............................................................ 32
제 4 장 실험 결과 및 고찰 ............................................ 33
4.1. Ti-25Ta-xHf 합금의 미세조직 관찰 및 상 분석............ 33
4.2. Ti-25Ta-xHf 합금의 전기화학적 특성 ...................... 39
4.3. Ti-25Ta-xHf 합금의 PEO 표면특성 ......................... 45
4.4. Ti-25Ta-xHf 합금의 PEO 처리 후 전기화학적 특성 .... 64
4.5. 마그네슘이 도핑된 수산화인회석(Mg-HA) 코팅 ......... 73
4.6. 세포 배양 ........................................................... 90
제 5 장 결 론 ............................................................ 93
참 고 문 헌 ................................................................95

최근 본 자료

전체보기

댓글(0)

0