본 연구는 대기오염 증가에 따른 건강손실에 대한 통계적 예측모형의 구축으로 건강위해성을 규명하고자 시계열 분석모형인 ARIMA 및 ARIMAX를 활용하여 비교?분석을 시행하였다. 전국을 대상으로 2002∼2013년의 12개년 자료를 활용하여 PM10, O3, NO2, SO2, CO 5가지 대기오염물질의 농도변화가 호흡기계 질환에 미치는 영향력을 조사하고, 전체지역을 4개의 권역으로 나누어 환경적 특성에 따른 지역별 영향력의 비교?분석을 실시하였다. 연구결과는 아래와 같다.
PM10 월평균 농도는 전국에서 1㎍/㎥ 증가 당 약 2.4%의 월평균 호흡기질환 유병건수의 상승을 나타냈다. 4개 권역별로 나누어 보면 수도권에서는 PM10 월평균 농도 1㎍/㎥ 증가 당 약 3.0%, 충청도권은 약 1.2%, 전라도권은 약 0.4%, 경상도권은 약 1.6%의 월평균 호흡기질환 유병건수의 상승을 보였다. O3 월평균 농도는 전국에서 0.001ppm 증가 당 약 4.0%의 월평균 호흡기질환 유병건수의 상승을 나타냈다. 4개 권역별로 나누어 보면 수도권에서는 O3 월평균 농도 0.001ppm 증가 당 약 3.0%, 전라도권은 약 1.0%, 경상도권은 약 2.5%의 월평균 호흡기질환 유병건수의 상승을 보였다.
NO2 월평균 전국 농도는 호흡기계 질환 유병건수에 유의한 영향을 미치지 않는 것으로 나타났다. 4개 권역별로 나누어 보면 수도권에서는 NO2 월평균 농도 0.001ppm 증가 당 약 3.5%, 충청도권은 약 4.5%의 월평균 호흡기질환 유병건수의 상승을 나타냈다.
SO2 월평균 농도는 전국에서 0.0001ppm 증가 당 약 1.8%의 월평균 호흡기질환 유병건수의 상승을 나타냈다. 4개 권역별로 나누어 보면 수도권에서는 SO2 월평균 농도 0.0001ppm 증가 당 약 1.2%, 경상도권은 약 2.8%의 월평균 호흡기질환 유병건수의 상승을 보였다.
CO 월평균 농도는 전국에서 0.01ppm 증가 당 약 0.6%의 월평균 호흡기질환 유병건수의 상승을 나타냈다. 4개 권역별로 나누어 보면 수도권에서는 CO 월평균 농도 0.01ppm 증가 당 약 3.0%, 충청도권 약 1.6%, 전라도권 약 0.8%, 경상도권 약 1.8%의 월평균 호흡기질환 유병건수의 상승을 보였다.
전반적으로, 대기오염 물질들의 농도 상승에 따라 호흡기계 질환 유병건수가 증가하는 것으로 나타났고, 권역별 특성에 따라 각 대기오염 물질들이 미치는 영향에 차이를 보였다. 이에 따라 향후 지역별 특성을 고려한 대기오염 기준 설정이 필요할 것으로 사료되며, 추후 연구에서 PM2.5 및 기타 관련 요인의 보다 정밀한 자료 구축을 통한 대기오염 환경 예측 모형 구축에 대한 결과의 제시를 제안한다.
The objective of this study is to establish a statistical prediction model for health damage caused by increased air pollution. In order to investigate the health risk it poses, comparison and analysis were conducted using two time series models ARIMA and ARIMAX. Data used in this study span 12 years from 2002 to 2013, and cover the entire country. The impact of changing concentration levels of 5 air pollutants PM10, O3, NO2, SO2, and CO on respiratory disease was investigated. The country was divided into 4 regions, and the effects on each region according to environmental characteristics were compared with one another for analysis. The followings are study results.
- In terms of PM10, the monthly average prevalence of respiratory disease increased by about 2.4% for each 1㎍/㎥ increase of monthly average PM10 concentration level over the country. Considering the prevalence by region, the Seoul Capital Area Sudogwon saw an increased prevalence of respiratory disease by about 3.0%, Chungcheong region by about 1.2%, Jeolla region by about 0.4%, and Gyeongsang region by about 1.6% per 1㎍/㎥ of monthly PM10 increase.
- As for the monthly average concentration of O3, the prevalence of respiratory disease increased by about 4.0% for each 0.001ppm increase across the country. By region, the monthly average prevalence of respiratory disease increased by about 3.0% in Sudogwon, by about 1.0% in Jeolla region, and by about 2.5% in Gyeongsang region for each 0.001ppm increase of the monthly average O3 concentration.
- The monthly average concentration of NO2 did not have a significant effect on the prevalence of respiratory disease. By region, the monthly average prevalence of respiratory disease increased by about 3.5% in Sudogwon, and by about 4.5% in Chungcheong region for each 0.001ppm increase of the monthly average concentration of NO2.
- For each 0.0001ppm increase of monthly average SO2 concentration, the monthly prevalence of respiratory disease increased by about 1.8% across the country. By region, it increased by about 1.2% in Sudogwon, and by about 2.8% in Gyeongsang region for each 0.0001ppm increase of the monthly SO2 concentration.
- The monthly average prevalence of respiratory disease increased by about 0.6% across the country for each 0.01ppm increase of monthly average CO concentration. By region, it increased by about 3.0% in Sudogwon, by about 1.6% in Chungcheong region, by about 0.8% in Jeolla region, and about 1.8% in Gyeongsang region for each 0.01ppm increase of monthly average CO concentration.
In general, the prevalence of respiratory disease demonstrated an increasing trend in accordance with the increase of concentration of air pollutants. The effect of each air pollutant varied depending on the characteristics of each region. Therefore, it is necessary to establish air pollution standards which take regional characteristics into account in the future. Further, it is recommended to establish an environmental prediction model for air pollution through establishing more accurate database on PM2.5 and other related factors in future studies.
Ⅰ. Intriduction 11. Necessity and objectives of study 1A. Necessity for study 1B. Study objectives 5Ⅱ. Theorectical Background 61. Air pollutants 6A. Particulate matter(PM10) 6B. Ozone(O3) 7C. Nitrogen dioxide(NO2) 8D. Sulfur dioxide(SO2) 9E. Carbon monoxide(CO) 102. Case study analysis: precedent studies 11A. Case analysis of domestic studies 11B. Case analysis of overseas studies 29Ⅲ. Methodology and Characteristics of Analyzed data 331. Time series analysis method 33A. Definition of time series data 33B. Stability of time series data 34C. Cointegration test 37D. ARIMA model 38E. ARIMAX model 452. Study subject and range 483. Study model 484. Analysis data and major characteristics 50A. National Health Insurance Service (NHIS) cohort DB 50B. Atmospheric environment data 52Ⅳ. Study Results 531. Basic statistics 53A. Air pollutant concentration of cities and provinces 53B. Air pollutant concentration per year 53C. Prevalence rate of patients with respiratory disease in cities and provinces 54D. Prevalence rate of patients with respiratory disease per year 55E. Evolution of air pollution rate 57F. Evolution of prevalence of patients with respiratory disease 602. Stability test of variables 61A. Unit root test, Autocorrelation function(ACF),Partial Autocorrelation function(PACF) 613. Suitability results of ARIMA model 70A. Country 70B. Seoul Capital Area(Sudogwon) 79C. Chungcheong-do region 88D. Jeolla-do region 97E. Gyeongsang-do region 1064. Results of respiratory disease prediction by ARIMAX model 115Ⅴ. Discussion 117Ⅵ. Conclusion 124References 125ABSTRACT 129