우리나라는 OECD 국가 중에서도 온실가스 배출 증가율이 1위이며, 수십 년간 세계 최고 수준의 온실가스 배출 증가세를 보이고 있다. 전 세계적으로 소비하는 1차 에너지는 건물 분야에서 30% 이상을 차지하고 있으며, 우리나라의 경우 총 에너지의 24%를 건물 분야에서 소비하고 있다. 현재 이러한 온실가스로 인해 도시의 평균 온도는 증가하고 있으며, 도시 열섬현상을 비롯한 환경문제가 발생되고 있다. 도시 열섬현상이란, 인구 증가, 자동차 통행 증가, 각종 건축물 증가, 인공 열 방출, 온실효과 등의 영향으로 도시 중심부의 기온이 주변 지역에 비해 상당히 높게 나타나는 현상이다. 도시 열섬현상으로 인해 배기가스를 포함한 대기 오염 물질들이 도심 상공에 함께 체류하면서 오염 농도가 높아지게 되고, 호흡기와 순환기 계통의 작용이 활발하지 못한 거주민들이 피해를 받게 되며, 불쾌적감, 열적 스트레스 등 건강악화의 문제가 발생한다. 이에 대응하여 건물 표면 온도를 낮추며 에너지 사용량 절감을 위한 방안 중 냉방 부하의 약 9.4%를 차지하는 지붕에 적용 가능한 Cool Roof, Green Roof가 제시되고 있으나 각각의 방법은 단점과 제한점이 존재한다.
Generally, the building sector is over 30% of the primary energy consumption in the world. In Korea 24% of the total energy is consumed in the building sector. Korea recorded the highest growth rate of greenhouse gas emission among the OECD countries for decades. The average temperature of the urban area has been increasing due to the greenhouse gas generating environmental problems, including urban heat island (UHI) phenomenon. UHI phenomenon is, urban area’s temperature being considerably higher than its surrounding areas due to the population growth, increase of automobile traffic, increase of various buildings, artificial heat release and the greenhouse effect. This increases the air pollution concentration with making the air pollutants including exhaust gas stagnant above the city. Also, it causes health problems; such as discomfort, thermal stress and critical damages to people with respiratory, and circulatory diseases. In response, ‘Cool Roof’ and ‘Green Roof’ systems are suggested to
keyword : Heat Island effect, PCM(Phase Chang Materials), Scale Model test, Apply to the Roof of the building, Simulation of Thermal Performance reduce energy consumption by lowering surface temperature of buildings. However, there are weakness and limitations in these systems. The purpose of this study is to develop PCM Cool Roof System, which could be easily applied to existing roof for diminishing UHI phenomenon and saving energy consumption, as well as compensating the faults of Cool Roof and Green Roof. According to results of preceding researches, there are 6 considerations when PCM is being applied to buildings: surface temperature, melting point, application parts of PCM, amount of PCM, application methods of PCM, and comparison and verification of simulation. The Thermal simulation of PCM Cool Roof System was conducted by considering PCM application to the roof and finding input data of the simulation through scale model test and mock-up test. These two experiments were conducted to measure the surface temperature and inner temperature with presence or absence of Cool Roof System. The small-scale model was made with 1/10 of general flat roof and mock-up model that was made of sandwich panel. The PCM Cool Roof System that could be applied to existing and new buildings was made by inserting packing-type PCM to the wood plastic component (WPC). According to the standards of ASHRAE, the validity of the results of experiments and simulation data was checked, and analyzed of heating and cooling load. This was conducted by applying the input data to the simulation building. The results of the simulation was as follows; if the reflectivity of roof surface was changed from 0.1 to 0.7, the maximum temperature in daytime and the indoor temperature appeared respectively lower about 29.5℃ and 1.0℃. If the reflectivity of roof surface was 0.7, cooling energy was reduced about 12%, but heating energy was increased about 9%. However, compared to local pilot Cool Roof campaign projects, PCM Cool Roof System showed 0.29% additional total energy saving. PCM Cool Roof System is the solution for diminishing UHI phenomenon and saving energy consumption that could be easily applied to existing, as well as compensating the faults of Cool Roof and Green Roof. It is expected that the mitigation effect will be further enhanced if further researches are carried out.
제 1 장 서 론 11.1 연구의 배경 및 목적 11.2 연구의 방법 및 범위 5제 2 장 PCM Cool Roof System 특성 및 이론 고찰 72.1 PCM Cool Roof System 개요 72.1.1 PCM Cool Roof System 정의 72.1.2 PCM Cool Roof System 특성 92.2 PCM Cool Roof System 이론 고찰 112.2.1 선행연구 동향 분석 112.2.2 선행연구 문제점 및 활용방안 182.3 소 결 19제 3 장 PCM Cool Roof System 열성능 실험 203.1 실험 개요 203.2 열성능 실험 213.2.1 PCM Cool Roof System 모듈 제작 213.2.2 축소 및 실물모형 제작 263.2.3 PCM Cool Roof System 열성능 실험 283.3 열성능 실험 결과 303.3.1 축소모형 실험 결과 303.3.2 실물모형 실험 결과 343.4 소 결 37제 4 장 PCM Cool Roof System 열성능 시뮬레이션 384.1 시뮬레이션 개요 404.2 시뮬레이션 신뢰도 검증 464.2.1 신뢰도 평가 방법 464.2.2 신뢰도 검증 결과 474.3 열성능 시뮬레이션 분석 544.3.1 시뮬레이션 경계 조건 544.3.2 시뮬레이션 결과 594.4 소 결 70제 5 장 결 론 73참 고 문 헌 76국 문 초 록 81ABSTRACT 83