메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학위논문
저자정보

류명록 (한국해양대학교, 한국해양대학교 대학원)

지도교수
박권하
발행연도
2017
저작권
한국해양대학교 논문은 저작권에 의해 보호받습니다.

이용수3

표지
AI에게 요청하기
추천
검색

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
A massive earthquake of Richter scale 9.0 followed by a tsunami with waves of 10 to 14m struck the Fukushima Daiichi(FD) nuclear power plant operated by Tokyo Electric Power Company(TEPCO). The power of nuclear power plant was lost, so cooling systems did not operate, and then the accident of hydrogen explosion was occurred. Due to this accident, the hydrogen explosion in severe accident was concerned again.
The hydrogen must be effectively controled or removed for defending the hydrogen explosion, but because of various accident causes and irregularity of hydrogen distribution and behavior, preparing countermeasure for explosion risk reduction is difficult.
In this study, the explosion risk according to hydrogen behavior in severe accident is evaluated, and the new structure of PAR is proposed and analyzed, hydrogen explosion is simulated using the previews results and analyzed at the specified locations in the containment building. Flames and pressure propagations are discussed, and the effect of the pressure impact on a wall in analyzed. The result shows that the high pressures impact on the building wall in the cases of the top and the bottom explosions. A multi-step PAR is proposed and analyzed. The distant between catalysts in firstly tested, and the analysis shows the distant 100mm is the best performance. Then two-step and three-step PAR are simulated and the results are compared with the results of the single step. The multi-step PAR reduces the spontaneous ignition problem and increases the hydrogen reduction rate radically. Two catalyst shapes of crossover and hexagon are proposed and analyzed, and the results are compared with those of conventional honeycomb. Hexagon shapes shows the best performance. As the outer structure of PAR, the guide vane is proposed, and studied. The vane having 150mm hight, 60°angle and attached between vane and catalyst is the best in the case of upward flow. The structure of 150mm hight, 100mm distance and 60°angle is the best in the sideward case, and the structure of 50mm hight, 60°angle and direct attached is the best.

목차

List of Tables ⅲ
List of Figures ⅳ
Abstract ⅶ
1. 서 론
1.1 연구배경 1
1.2 연구 목적 및 내용 3
2. 수소 폭발에 대한 계산적 고찰
2.1 수학적 모델 및 계산 조건 4
2.1.1 수학적 모델 4
2.1.2 계산 조건 6
2.2 폭발 계산 결과 및 고찰 12
2.2.1 수소폭발 12
2.2.2 최대압력이 격납건물에 미치는 영향 37
2.2.3 수소 폭발 요약 45
3. PAR의 구조에 따른 성능 해석
3.1 수학적 모델 및 계산조건 46
3.1.1 수학적 모델 46
3.1.2 계산조건 48
3.2 내부 구조 해석 및 고찰 45
3.2.1 성능 평가 방법 55
3.2.2 다단 촉매 해석 56
3.2.3 촉매 형상 해석 67
3.2.4 요약 71
3.3 외부가이드 구조해석 및 고찰 72
3.3.1 외부가이드 성능 평가 방법 72
3.3.2 해석결과 73
3.3.3 요약 85
4. 결론 86
참고문헌 87

최근 본 자료

전체보기

댓글(0)

0