메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학위논문
저자정보

박선이 (대구가톨릭대학교, 대구가톨릭대학교 대학원)

지도교수
엄인용
발행연도
2017
저작권
대구가톨릭대학교 논문은 저작권에 의해 보호받습니다.

이용수5

표지
AI에게 요청하기
추천
검색

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
Recently, a needle trap device (NTD) was introduced to the scientific world of sample preparation. NTDs, like solid-phase microextraction (SPME) fibers, are another approach for one-step solventless sampling and sample preparation technique. The major advantages of NTDs as a sorbent trap technique are simplicity and convenience for sampling of VOCs from different matrixes and injection to the GC directly. Due to these reasons, they are widely used to analyze VOCs easily and efficiently in both gaseous and aqueous samples. However, fine sorbent particles packed in such a small tubing of the NTD do not make it suitable to use the conventional purge and trap technique which is one of the widely used active sampling techniques. To address this limitation, new approach called sequential purge and trap technique for NTD was reported few years ago. This technique adopted the purge and trap sampling mechanism but did not use an additional purge gas cylinder by recycling headspace air. We revisit this technique to sample and analyze geosmin and 2-MIB in aqueous samples. Geosmin and 2-MIB are naturally produced from blue-green algae and are known to cause earth-musty odor which are difficult to remove during tap water production process. Human noses are very sensitive to detect these compounds in ppt level (5 ng/L for 2-MIB and 30 ng/L for geosmin). In this report, we present concept of a syringe pump assisted headspace sampling technique (i.e. sequential purge and trap technique) for needle trap device and several experimental factors to improve sampling efficiencies of geosmin and 2-MIB in aqueous samples.

목차

Ⅰ. 서 론 1
Ⅱ. 실 험 4
1. 시약 및 기기 4
2. Needle trap device (NTD) 5
3. Sequential Purge and Trap을 이용한 시료 포집과 분석과정 6
4. 기체 크로마토그래피 시스템 7
Ⅲ. 결과 및 논의 8
1. 크로마토그래피를 이용한 Retention time 확인 8
2. 시료의 온도 변화에 따른 추출효율 9
3. 시료의 Headspace 부피에 따른 추출효율 9
4. 시료 용액에 NaCl 첨가 양에 따른 추출효율 11
5. 시료의 Sample 양에 따른 추출효율 12
6. Calibration curve 13
Ⅳ. 결 론 15
참고 문헌 16

최근 본 자료

전체보기

댓글(0)

0