메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학위논문
저자정보

이호현 (충북대학교, 충북대학교 대학원)

지도교수
전명근
발행연도
2016
저작권
충북대학교 논문은 저작권에 의해 보호받습니다.

이용수13

표지
AI에게 요청하기
추천
검색

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
Water is one of the indispensable things to human and we cannot survive without it. Still, many people have died from water-related diseases, where tap water is not supplied. Even the citizens with tap water wants cleaner and healthier water, which is thought to be endless desire. For this purpose, we propose a new control method using machine learning algorithms to cope with limitation of the existing manual operation or general feedback control methods.
Coagulants are injected in order to remove a variety of organic substances in the influent of a water purification plant. The proper dosage rate of coagulants can be determined by measuring sedimentation turbidity four to seven hours later, which make real-time feedback control impossible. In addition, manual operation in accordance with the Jar-Test carried out in the laboratory may cause experimental and human errors due to the changes of organic characteristics and water quality. The proposed intelligent control algorithm to decide optimal chemical dosage rate is expected to operate in real-time and reduce cost up to 25%.
In the pre-chlorination process, the resulting water quality depends largely on operator’s experience, because sedimentation basin is open to space and affected by climate and sunshine. From this background, a fuzzy system is proposed for pre-chlorine modeling to reduce the carcinogenic substance and decide the optimal chlorine injection rate, which is affected by chlorine evaporation rate in sedimentation basin depending on detention time, weather and water quality. The additional chlorine meter is installed in the inlet part of sedimentation to reduce the feedback time and implement cascade control, which leads to maintaining the residual chlorine concentration decided by fuzzy rules. The proposed fuzzy system helps to take a preemptive action about long time delay, the characteristics of the disinfection process, and reduce the variation of residual chlorine rate by 4.6 times and the chlorine consumption.
In the post-chlorination process, it is very important to maintain a constant chlorine concentration, which is the final step in the water treatment process before servicing water to citizens. Even though a flow meter between the filtration basin and clear well must be installed for the post-chlorination process, it cannot be installed due to bad conditions. In that case, a raw water flow meter has been used as an alternative and has led to dosage errors due to detention time. Therefore, the influent flow to the clear well is proposed to be estimated by a time series neural network for the plant without a measurement value and the modeling and controller is also proposed by the neuro-fuzzy algorithm to analyze the chlorine concentration change in the well. The proposed algorithm leads to the reduction of input and output chlorination rate standard deviation of 1.75 times and 1.96 times respectively when it was applied to an operating WTP. As a result, hygienically safer drinking water is supplied with preemptive response for the time delay and inherent characteristics of the disinfection process.
In this paper, the improvement effect of the coagulation and disinfection process have been confirmed by using the proposed algorithm in the main process of water treatment. In the future, those artificial intelligence algorithms must be examined continuously in other processes to supply water more hygienically, efficiently and economically.

목차

Ⅰ. 서 론 1
1.1 연구배경 1
1.2 연구내용 7
Ⅱ. 수처리 공정 9
2.1 정수처리공정 9
2.1.1 취수시설 10
2.1.2 정수시설 12
2.2 수처리제 제어 21
2.2.1 약품공정제어 21
2.2.2 소독공정제어 24
2.3 공정제어 적용 알고리즘 36
2.3.1 상관관계 분석 36
2.3.2 시계열 분석 37
2.3.3 선형회귀 분석 39
2.3.4 시계열신경망 40
2.3.5 뉴로퍼지 알고리즘 42
Ⅲ. 약품(응집제) 공정 제어 45
3.1 기존제어방식 고찰 45
3.2 약품 공정 제어기 설계 및 모델링 49
3.2.1 약품 공정제어 알고리즘 49
3.2.2 데이터 분석 51
3.2.3 Fuzzy 제어기 53
3.2.4 선형회귀분석 56
3.3 응집제 제어기 구현 및 개발 70
3.3.1 약품공정 제어 프로세스 70
3.3.2 약품공정 제어 플랫폼 개발 71
3.4. 시뮬레이션 결과 고찰 73
Ⅳ. 전염소 공정제어 77
4.1 기존 제어방식 고찰 77
4.2 전염소 제어기 설계 및 잔류염소 모델링 81
4.2.1 데이터 분석 81
4.2.2 Fuzzy 제어기 82
4.2.3 Neuro Fuzzy Algorithm 86
4.3. 전염소 지능형 제어기 구현 및 개발 87
4.3.1 전염소공정 제어 프로세스 87
4.3.2 Hybrid Fuzzy Controller 개발 88
4.4. 정수장 운영결과 고찰 91
Ⅴ. 후염소 공정제어 96
5.1 기존 제어방식 고찰 96
5.2 후염소 제어기 설계 및 잔류염소 모델링 102
5.2.1 상관관계 분석 103
5.2.2 여과유량 예측 알고리즘 104
5.2.3 후염소 주입률 결정을 위한 제어기 112
5.2.4 정수유입 잔류염소 농도 모델링 116
5.2.5 정수유출 잔류염소 모델링 119
5.3. 후염소 지능형 제어기 구현 및 개발 125
5.3.1 정수 유입 잔류염소계 신설 & 캐스케이드 제어 125
5.3.2 Hybrid Neuro-Fuzzy Controller 개발 126
5.4. 시뮬레이션 및 실험결과 고찰 129
Ⅵ. 결 론 135
참 고 문 헌 138
감 사 의 글 144

최근 본 자료

전체보기

댓글(0)

0