메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학위논문
저자정보

김승환 (충북대학교, 충북대학교 대학원)

지도교수
조해용
발행연도
2017
저작권
충북대학교 논문은 저작권에 의해 보호받습니다.

이용수3

표지
AI에게 요청하기
추천
검색

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
Pipe expansion, which is one of the pipe end-forming processes, means elimination of diameter differences between two pipe ends by increasing the diameter. In order to be expanded, the pipe has been mainly forced by mandrel or punch. This mechanical method is suitable for auto parts industry due to high productivity and low cost of production. And the mechanical method of expanding process is appropriate for the pretensioner pipe as an automotive part.
In this thesis, a upper bound method has been used to analyze pipe expanding process and design dies for the pretensioner pipe. A kinematically admissible velocity field has been newly derived, where in, reduced thickness of the expended pipe has been considered to represent actual pipe expanding process. The internal energy and the energy dissipated on frictional and velocity discontinuity surfaces has been optimized with respect to the semi-cone angle of punches. Comparisons of upper bound analysis and FEM results were in good agreement with experimental trials and conclude as follows;

1. A kinematically admissible velocity field has been newly derived, where in, reduced thickness of the expended pipe has been considered. It should be useful for expanding or sinking of pipes.

2. The upper bound alanysis and FEM results are in good agreement. It is desirable that the semi-cone angle of expanding punch is 15° to 20° in the pipe expanding process.

3. The experimental results are in good agreement with the upper bound analysis and FEM ones. The upper bound analysis in this thesis would be useful to design the pipe expanding process.

목차

Ⅰ. 서론 1
1.1 연구배경 1
1.2 연구동향 3
1.3 연구목적 4
Ⅱ. 이론적 배경 6
2.1 상계법 6
2.2 유한요소법 8
Ⅲ. 결과 및 고찰 10
3.1 상계해석 10
3.1.1 형상함수 10
3.1.2 동적가용속도장 11
3.1.3 에너지소비율 계산 13
3.2 유한요소해석 15
3.2.1 펀치반각 선정 16
3.2.2 확관공정 해석 17
3.2 확관 실험 18
3.3.1 성형하중 비교분석 18
3.3.2 확관부의 단면형상 비교분석 20
Ⅳ. 결론 22
참고문헌 24

최근 본 자료

전체보기

댓글(0)

0