메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학위논문
저자정보

백승룡 (경북대학교, 경북대학교 대학원)

지도교수
이병준
발행연도
2017
저작권
경북대학교 논문은 저작권에 의해 보호받습니다.

이용수24

표지
AI에게 요청하기
추천
검색

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
Phosphorus is an essential element for plant growth so that it has been used for agriculture. However, according to recent studies, mineral phosphate which is the main source of phosphorus might be drained within 50 years (Takaoka, 2010). To cope with this problem, the phosphorus recovery processes in wastewater treatment plants (WWTPs) have been developed and applied in pilot or full scale. Among them, the struvite crystallization process is the most popular, because of fast crystallization in the process and slow N and P release in agricultural application.
In this study, a feasibility test of the struvite crystallization process has been done for a typical WWTP in Korea. We firstly investigated characteristics of process water or sludge from the anaerobic digester, the centrifuge and the entire sludge treatment system in the WWTP, so as to evaluate the feasibility of struvite crystallization for the process water/sludge. A chemical equilibrium model (Visual MINTEQ; vminteq.lwr.kth.se) was used to evaluate the P-removal potential of the struvite crystallization process in the given chemical conditions of the process waters/sludge (Celen et al., 2007). Also, batch aeration tests were performed to evaluate the kinetics (i.e. speed) of struvite crystallization. The PO4-P concentrations of (1) the return flow from the entire sludge treatment system, (2) the sludge from the anaerobic digester and (3) the centrate from the sludge centrifuge were measured at 12.2 ± 1.36, 72.4 ± 2.28 and 37.4 ± 0.43 mgPO4-P/L, respectively. These PO4-P concentrations were 2~5 times lower than those of WWTPs in developed countries. Applying the struvite crystallization process to the return flow might be nonsense with such a low PO4-P concentration. However, the PO4-P concentrations of the digested sludge and the centrate were found to be high enough for applying the struvite crystallization process.
The chemical equilibrium model was used to estimate the P-removal potential of the struvite crystallization process, in the given chemical conditions of the digested sludge and the centrate, and to find the optimal Mg dose and pH. When the ratio of the Mg dose to the PO4 equivalent amount (one Mg mole reacts with one PO4 mole; see the equation above) becomes higher than 1.5, the equilibrium PO4-P concentration became stable, approaching the lowest concentration. Also, above pH 8.5, the equilibrium PO4-P concentration approached the lowest concentration.
Batch aeration tests indicated that the PO4 removal kinetics by struvite crystallization was found to fit well to the 1st order kinetics (Figure 2) (Nelson et al., 2003). pH was found to determine not only the equilibrium (i.e. final) PO4-P concentration but also the kinetics (i.e. speed) of the reaction. pH 9 was shown to speed up PO4-P removal, compared to pH 7 or 8. Also, note that aeration increased pH without adding NaOH, from 7.3 to pH 8.8 for the sludge and from 8.4 to 9.1 for the centrate, because it purged out CO2 and other acidic gases in the sludge and the concentrate.
This study proved the feasibility of the struvite crystallization process and provided the optimal conditions for application to a WWTP. Findings from the chemical equilibrium modelling and the batch aeration tests may be further used for design and operation of pilot- or full-scale struvite crystallization processes.

목차

Ⅰ. 서 론 1
1.1 연구배경 1
1.2 연구내용 및 목표 2
Ⅱ. 문헌 연구 4
2.1 하수슬러지 (반류수) 처리 계통 4
2.1.1 슬러지의 일반적 정의 4
2.1.2 농축 6
2.1.3 소화 6
2.1.4 탈수 7
2.1.5 슬러지 처리 11
2.2 Struvite 결정화 메커니즘 11
2.2.1 Struvite 11
2.2.2 결정화 12
2.2.3 핵 형성 및 성장 19
2.2.4 전이영역 23
2.2.5 기타 화합물의 영향 24
2.2.6 CO2 탈기 26
2.3 인제거 공법 비교 검토 28
2.3.1 분류 28
2.3.2 적용 가능한 공법 31
2.3.3 개발 진행중인 인결정화 공정 35
2.3.4 기술 개발현황 37
Ⅲ. 실험 방법론 38
3.1 조사개요 38
3.2 실험방법 38
3.2.1 연구대상지역 38
3.2.2 운영자료분석 39
3.2.3 현장조사 및 수질화학 조성 분석 40
3.2.4 Visual MINTEQ 41
3.2.5 Batch test 42
Ⅳ. 결과 및 고찰 44
4.1 운영자료 및 현장측정자료 분석 44
4.2 Visual MINTEQ를 이용한 결정화 평형화학 연구 51
4.3 배치실험을 통한 Struvite 결정화 동역학 연구 57
Ⅴ. 결론 65
참고문헌 66
Abstract 76

최근 본 자료

전체보기

댓글(0)

0