메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학위논문
저자정보

문철 (부산대학교, 부산대학교 대학원)

지도교수
權營顔
발행연도
2017
저작권
부산대학교 논문은 저작권에 의해 보호받습니다.

이용수13

표지
AI에게 요청하기
추천
검색

이 논문의 연구 히스토리 (9)

초록· 키워드

오류제보하기
Vector control of a permanent-magnet synchronous motor requires the electrical speed and position information of the rotor. Generally, this state values information can be obtained through position sensors such as encoder and resolver. However, these position seosnors incur higher fabrication costs and need maintenance, To solve the problem, various sensorless control methods which can implement the vector control of the motor drive without position sensors have bee studied,
A Kalman filter theory to estimate state values of a motor drive without position sensor is a popular approach. This filter theory is a method to estimate optimal state values by using the Kalman gain based on error covariance recursively. However, sometimes the extended Kalman filter has a rough estimation because of the difference between a real nonlinear and linearization model. Because the high-order term of the function is neglected in the process of linearization.
Recently, a nonlinear Kalman filter except for a linearization process was proposed by Julier and Uhlman. The error between a real and linear model of the conventional Kalman filter has brought about the advent of an unscented Kalman filter. This filter algorithm combined an unscented transformation to remove the linearization process that may occur in the extended Kalman filter. This new nonlinear state estimation model is better able to strategize to estimate the mean and error covariance using properly represented values such as sigma points and weights through the unscented transformation.
Despite such a merit, the heavy computation load of this Kalman filter algorithms is a major drawback. As a result, a square-root form and a reducediorder model are widely used to solve this problem.
A bond between the square-root concept and Kalman filter is needed to mitigate the performance degradation from round-off error in the early stage of microprocess development The square-root Kalman ?lter is often used for numerical stability and can reduce memory and word length. Better numerical stability can be achieved when the error covariance matrix presents a square-root configuration.
Also, to solve the heavy code size problem, a variety of Kalman filter with reducediorder forms have been proposed. however, the previous published paper using the backielectromotive force needs an additional algorithm to estimate the electrical rotor position and speed and state estimation is not proper below 10% of rated mechanical speed.
This paper proposes the unscented Kalman filter with a Potter square*root algorithm and a parallel reduced*()rder form for state estimation of a motor drive without position sensor. The design and implementation of this filter for vector control of a permanentimagnet synchronous motor under the speed sensorless environment is investigated in this paper.
To evaluate the performance of proposed method, the designed filter With Potter algorithm was applied to the motor drive control without position seonsor of 8-pole 1[hp] permanent-magnet synchronous motor. This motor is linked to 1[hp] direct current motor for load experiment using the 2OOO[PPR] incremental encoder and resolution is four using the 150[MHZ] Texas Instruments TMS32OF2B335. The switching method and frequency are 2.5[kHz] symmetrical space vector pulse width modulation. Sampling period of the vecctor current and speed control has been selected as 200[㎲] and 1[ms], respectively. The real values such as mechanical speed, electrical rotor position and currents are measured and observed by oscilloscope.
The designed filter can reduce code computation time, and the estimation performance is analogous to the conventional Kalman filter simultaneously. The code
size of the proposed model using general unscented transformation was greatly reduced by approximately 43.11% and 38[㎲] maintaining the performance.
Simulation and experimental results such as forward and reverse rotation in high and lowispeeds(2.5~100% of rated speed), load Variation(0504->70?>50->0 and 0?>100->0 of rated torque), detuning parameters(90% of stator resistance and inductance) and noise environment are presented. The proposed model in this paper is Viable for the sensorless speed control of a motor having vector control, and the estimation performance is not significantly different relative to the previously presented Kalman filter model in spite of the reduced computation load The experimental results demonstrate that the designed filter is viable and has powerful performance

목차

제1장 서론 1
1.1 연구배경 1
1.2 연구내용 14
1.3 논문구성 16
제2장 영구자석 동기전동기의 수학적 모델링 및 벡터 제어 17
2.1 영구자석 동기전동기의 실축 전압 방정식 18
2.2 영구자석 동기전동기의 직교축 전압 방정식 22
2.3 영구자석 동기전동기의 토크 방정식 27
2.4 영구자석 동기전동기의 벡터 제어 31
제3장 칼만 필터 이론 34
3.1 확장 칼만 필터 35
3.2 무향 칼만 필터 39
3.2.1 일반 무향 변환 40
3.2.2 기본 무향 변환 41
3.2.3 무향 칼만 필터 알고리즘 46
3.2.4 다양한 무향 변환 비교 49
3.3 제곱근 무향 칼만 필터 51
3.4 상태 관측기와 칼만 필터 비교 54
제4장 제안된 센서리스 속도 제어 56
4.1 영구자석 동기전동기의 병렬 축소차수 상태 방정식 56
제5장 컴퓨터 시뮬레이션 63
5.1 구동 시스템 구성 63
5.2 인버터 출력 전압 제어 65
5.2.1 공간 벡터 펄스 폭 변조 방식 66
5.2.2 소팅 알고리즘을 이용한 공간 벡터 펄스 폭 변조 방식 81
5.2.3 과변조 대책 87
5.3 프로그램 연산자 비교 90
5.4 성능 비교 91
제6장 실험 결과 및 검토 114
6.1 실험 장치 구성 114
6.2 연산 시간 비교 121
6.3 성능 비교 125
제7장 결론 148
참고문헌 152
부록 A. Potter 제곱근 알로기름 유도 159
부록 B. 전차수 상태 관측기 162
B.1 기계 방정식을 이용한 전차수 상태 관측기 164
B.2 전압 방정식을 이용한 전차수 상태 관측기 166
Abstract 170

최근 본 자료

전체보기

댓글(0)

0