메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학위논문
저자정보

원미소 (부산대학교, 부산대학교 대학원)

지도교수
김양도
발행연도
2017
저작권
부산대학교 논문은 저작권에 의해 보호받습니다.

이용수10

표지
AI에게 요청하기
추천
검색

이 논문의 연구 히스토리 (4)

초록· 키워드

오류제보하기
Hydrogen has been considered as an attractive alternative to fossil fuels particularly over the past decade and is considered by many a barbinger to the hydrogen economy. Hydrogen can be produced using divers, domesitc resources-including fossil fuels such as natural gas and coal. 90% of the world’s hydrogen is currently obtained by the reformation of fossil fuels, which consumes much energy and is accompanied by serious CO2 emissions. Electrolysis is a promising option for hydrogen production from renewable resoruces. Electrolysis is the process of using electricity to split water into hydrgen and oxygen. PEM electrolysis allows higher current density and safety advantages such as lack of corrosive electrolyte. The acid environment used to the catalysts such as Pt group metal(PGM), resulting in high cost. Alkaline electrolysis enables the attractive operating parameter becuase alkaline electrolysis applied non-precious metal or oxides as electrolcatalysts. While alkaline electrolysis materials are still less stable and efficient than PEM materials. PEM electrolysis requires a high amount of costly PGM catalysts, and liquid alkaline electrolysis is not well suited for intermittent operation. Uusing the anion exchagne membrane water electrolysis cells(AEMWEC) method expedcted result in high efficiency. The anodic and cathodic half cells are separated by an AEM, in the presence of middle alkaline electrolyte solution circulating only through the anodic half-cell. The PGM electrocatalyst indicated a higher activity and stability. It is necessary to develope inexpensive non-precious metal electrocatalysts such as metal oxdie, perovskite and layered double hydroxide. In this study, we were synthesized 0D & 1D CuCoO catalyst and performace activity for Oxygen evolution reaction. CoCoO NP was synthesized using a Co-precipitaion method. And, 1D CuCoO NP was synthesized by electrospinning. The morphologies and structures of CuCoCo nano materials were characterized by FE-SEM, and XRD, XPS, BET. The activity of the OER catalyst was analysis with LSV. In this case, it can be seen as an cuurent density, tafel-plot, overpotentail, onset potential. And the stability test to investigate the durability was performed. This test was progressed in static potential 1.85V vs. NHE in 1M KOH for 5h

목차

제 1 장 서 론 1
제 2 장 이론적 배경 4
2.1 수전해 (water electrolysis) 4
2.1.1 수소 에너지 4
2.1.2 수전해 종류 및 특징 6
2.1.3 음이온 교환막 수전해법 (AEMWE) 7
2.1.4 산소발생 촉매 10
2.2 전기화학 촉매 13
2.2.1 0D Nanoparticle 13
2.2.2 1D Nanofiber 14
2.2.3 전기방사(electrospinning)의 원리 및 특징 15
제 3 장 실험방법 18
3.1 전기화학촉매합성 18
3.1.1 OD Nanoparticle 합성 18
3.1.2 1D Nanofiber 합성 19
3.2 형상 및 구조 분석 21
3.3 전기화학 분석 22
제 4 장 결과 및 고찰 24
4.1 OD Nanoparticle 24
4.1.1 물리화학적 분석 24
4.1.2 전기화학적 분석 32
4.2 1D Nanofiber 특성 분석 37
4.2.1 물리화학적 분석 37
4.2.2 전기화학적 분석 43
제 5 장 결 론 46
참고문헌 47
Abstract 53

최근 본 자료

전체보기

댓글(0)

0