메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학위논문
저자정보

이용우 (포항공과대학교, 포항공과대학교 일반대학원)

지도교수
정윤희
발행연도
2017
저작권
포항공과대학교 논문은 저작권에 의해 보호받습니다.

이용수1

표지
AI에게 요청하기
추천
검색

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
We synthesize and investigate strongly correlated materials by using the fundamental characterization tools such as magnetic property and electric transport measurement system. To perform the comprehensive investigation of exotic magnetoelectric materials, we found the microscopic origin and information about the cupric divanadate Cu2V2O7 and topological non trivial metal Bi1−xSbx (x ∼ 0.04).
Single crystals of orthorhombic polar oxide α-Cu2V2O7 with space group Fdd2 are synthesized and their physical properties are measured. Neutron powder diffraction is also performed on a poly-crystal sample to extract the magnetic structure. The ground state is shown to be weakly ferromagnetic, that is, collinearly antiferromagnetic in the a-direction with a small remanent magnetization in the c-direction. When an external magnetic field is applied in the c-direction, further spin canting, accompanied by the induced electric polarization, occurs. It is demonstrated that the magnetoelectric effect in α-Cu2V2O7 is adequately described if spin-dependent p-d hybridization due to spin-orbit coupling as well as magnetic domain effects are simultaneously taken into account. We discuss the implication of the present result in the search for materials with multiferroicity and/or magnetoelectricity.
The Weyl semimetal is a hopeful system to apply on the future spintronic devices. Antimony doped bismuth alloy,BixSb1−x, allows us to reach the critical point
which is a boundary between the topological non trivial insulator and trivial band insulator. About 3-4% Sb doped case, electron and hole bands are touched at a point, becomes a Dirac metal. When external magnetic fields are turned on, degenerated Dirac bands are split to two Dirac bands along the applied field direction.
These Dirac nodes have different chirallity and generate anormalous current when electric and magnetic fields are applied parallel direction. Thus, the negative value
of longitudinal magneto resistance appears and this has been regarded as a clue of the existence of Weyl phase. However, we found more concrete measurement method to justify Weyl state by using measurement of non-linear dependence on the longitudinal magnetoresistance. Comparing with transverse magnetiresistance, other
possibilities are ruled out which originate from extrinsic effects such as Joule heating and Schottky junction problem. Semi classical Boltzmann transport theory with topological aspect is introduced to explain the nonlinearlity. We find a quadratic dependence of conductivity with respect to E and B, reveals only in the presence of the Weyl phase.

목차

1 Introduction 1
1.1 General Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2 Overview of the General Backgrounds 5
2.1 Multiferroicity: Magnetoelectric Effects . . . . . . . . . . . . . . . . . 5
2.1.1 Ferroelectricity in non-collinear magnetic system . . . . . . . . 6
2.1.2 Ferroelectricity in collinear magnetic system . . . . . . . . . . 6
2.1.3 Spin-dependent Hybridization mechanism . . . . . . . . . . . 8
2.2 Magnetoelectric Tensor Analysis . . . . . . . . . . . . . . . . . . . . . 10
2.3 Brief review of Cu2V2O7 . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4 Electromagnetic properties of Topological non-trivial metal:Weyl metal 17
2.4.1 Weyl metal . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.5 Transport Theory for Weyl metal . . . . . . . . . . . . . . . . . . . . 22
2.5.1 Boltzmann transport equation . . . . . . . . . . . . . . . . . . 22
2.5.2 Application to Weyl metal . . . . . . . . . . . . . . . . . . . . 23
3 Experimental Techniques 29
3.1 Sample Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.1.1 Solid State Reaction Method . . . . . . . . . . . . . . . . . . . 29
3.1.2 Flux Method . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.1.3 Bridgman and Stockbarger Method . . . . . . . . . . . . . . . 31
3.2 Structural Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2.1 X-Ray Diffraction . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.3 Physical Properties Measurements . . . . . . . . . . . . . . . . . . . . 33
3.3.1 Magnetic Properties Measurements . . . . . . . . . . . . . . . 33
3.3.2 Pyro-, Magneto-electric Current Measurement . . . . . . . . . 33
4 Cupric Vanadate α-Cu2V2O7 39
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.2 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.5 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.5.1 Neutron Powder Diffraction . . . . . . . . . . . . . . . . . . . 54
4.5.2 Polarization calculation . . . . . . . . . . . . . . . . . . . . . . 57
4.5.3 Domain Effects . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5 Weyl metal: Time Reversal Symmetry Broken Bi1−xSbx (x=0.04) 65
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.3 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.4 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
6 Summary 79

최근 본 자료

전체보기

댓글(0)

0