메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학위논문
저자정보

한지혜 (공주대학교, 공주대학교 대학원)

지도교수
서명석
발행연도
2018
저작권
공주대학교 논문은 저작권에 의해 보호받습니다.

이용수0

표지
AI에게 요청하기
추천
검색

이 논문의 연구 히스토리 (3)

초록· 키워드

오류제보하기
In this study, a hybrid-type of day fog detection algorithm was developed based on the optical and textural characteristics of fog top, using the recent geostationary satellite, Himawari satellite/AHI(Advanced Himawari Imager) data.. Supplementary data, such as air temperatures of numerical weather prediction model(LDAPS) on land and simulated clear sky radiance on sea, were used for fog detection. Also, 10 minute data from a visibility meter from the Korea Meteorological Administration were employed for a quantitative verification of the fog detection results. Normalized albedo, an optical property of fog, was utilized to distinguish between fog and other objects such as clouds, land, and oceans. The normalized local standard deviation that represents spatial variability of the fog surface and temperature difference between fog top and air temperature were also assessed to separate the fog from low cloud. Initial threshold values for the fog detection elements were set using hat-shaped threshold values through frequency distribution analysis of fog cases. And the initial threshold values were optimized through the iteration method by minutely changing them using threat score(TS). The validation results showed that the fog detection level was the highest in cases where the fog was strong and prevail. However, the fog detection level differs from case to season. The average POD and FAR for the evaluation cases were 0.72 and 0.70, respectively. Because the FAR is discouragingly high, we analyzed the availability of other channels of Himawari-8/AHI and seasonal threshold values. Among the various sensitivity tests, the BTD(11 um ? 12 um) and BTD(11 um ? 13 um) showed a possibility of reduction of FAR. In addition, sophistication of threshold values as a function of season clearly improved the fog detection level. However, the fog detection level is sensitive depending on the intensity and type of fog. Therefore, to improve fog detection level and stability, it is necessary to correct the systematic errors of LDAPS data and to elaborate the threshold values using more than one year''s case.

목차

I 서론 1
II 자료 및 연구방법 3
1. 자료 3
2. 연구 방법 6
III 연구결과 11
1. 임계값 설정 11
2. 시정계를 이용한 정성적 및 정량적 검증 15
IV 토론 20
1. 다른 채널 활용 가능성 분석 20
2. 계절 임계값 적용 결과 23
3. 시정계의 불확실성 27
V 요약 및 결론 32
참고문헌 34
ABSTRACT 37

최근 본 자료

전체보기

댓글(0)

0