메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학위논문
저자정보

한다솜 (전북대학교, 전북대학교 일반대학원)

지도교수
유동진
발행연도
2018
저작권
전북대학교 논문은 저작권에 의해 보호받습니다.

이용수3

표지
AI에게 요청하기
추천
검색

이 논문의 연구 히스토리 (6)

초록· 키워드

오류제보하기
As environmental issues such as global warming are deepening in the international society, researches on renewable energy are taking place to replace thermal energy sources. Among the new and renewable energies, researches on fuel cells are actively being carried out. Fuel cells are one-stage power generation systems and have the highest efficiency among currently available power generation technologies. In order to commercialize fuel cells, many problems have to be solved. Among them, it is essential to develop membranes to replace Nafion®.
In this study, poly(arylene ether)sulfone membrane was synthesized using an aromatic hydrocarbon system and the properties of the polymer electrolyte membrane were proceeded by comparing the position of the hydroxyl group in dihydroxynaphthalene.
Prior to the synthesis, 3D structure was drawn to predict the structure of the polymer, and there was a large difference in the hydrophobic part containing dihydroxynaphthalene. The physical properties and performance were compared using analytical methods such as 1H?NMR, FT?IR, GPC, TGA, DSC, and AFM.
It was confirmed that the polymer was synthesized well through the structural analysis using 1H?NMR and FT?IR. In the thermogravimetric analysis, the decomposition of the sulfonic acid group starts at about 240℃, and the glass transition temperature obtained through the differential scanning calorimetry is 180℃ and thus it is considered to be thermally stable. Moisture content and IEC were found to be higher by the effect of sulfonic acid groups on the block copolymer. The ionic conductivities were 52.6 mS/cm for BC 26-X35Y29, 7.4 mS/cm for BC 26-X84Y29 and 13 mS/cm for BC 27-X''35Y29 at 90℃.
BC 27-X''35Y29 showed lower IEC and ionic conductivity than BC 26-X35Y29 despite similar sulfonation degree. This was shown in the AFM phase image. In BC 26-X35Y29, a well- formed ion channel was observed which gave it the highest ionic conductivity. On the other hand, BC 27-X''35Y29, with similar degree of sulfonation, showed a lower IEC and ionic conductivity due to the blockage of the ion channel because of the aggregation of hydrophobic regions as predicted by the 3D structure drawn. In order to increase the ionic conductivity, it is necessary to effectively form an ion channel and synthesis of a block copolymer is very important in controlling that ion channel.

목차

1. 서론 1
1. 1. 연료전지의 원리 2
1. 2. 연료전지의 종류 5
1. 3. 고분자 전해질 막 8
1. 3. 1. 과불소계 고분자 전해질 막 9
1. 3. 2. 부분 불소계 고분자 전해질 막 11
1. 3. 3. 탄화수소계 고분자 전해질 막 13
1. 3. 4. 방향족 탄화수소계 고분자 전해질 막 15
2. 실험 24
2. 1. 시약 및 실험재료 24
2. 2. 실험 방법 25
2. 2. 1. 술폰화된 단량체 (monomer)의 합성 25
2. 2. 2. 소수성 올리고머의 합성 25
2. 2. 3. 친수성 올리고머의 합성 26
2. 2. 4. 블록 공중합체 (block copolymer)의 합성 27
2. 2. 5. 고분자 전해질 막의 제조 28
2. 3. 특성 분석 30
2. 3. 1. 용해도 시험 (Solubility test) 30
2. 3. 2. 양성자 핵자기 공명 분광법 (1H?NMR) 30
2. 3. 3. 적외선 분광법 (FT?IR) 30
2. 3. 4. 겔 투과 크로마토그래피 (GPC) 30
2. 3. 5. 열 중량 분석법 (TGA) 31
2. 3. 6. 시차주사열량측정법 (DSC) 31
2. 3. 7. 함수율 (Water uptake) 31
2. 3. 8. 이온 교환 능력 (Ion exchange capacity) 32
2. 3. 9. 산화안정성 (Oxidative stability) 33
2. 3. 10. 이온전도도 (Ionic conductivity) 33
2. 3. 11. 원자힘현미경 (AFM) 34
3. 결과 및 고찰 35
3. 1. 단량체 (monomer)의 합성과 구조분석 35
3. 2. 블록 공중합체 (block copolymer)의 합성과 제막 38
3. 3. 블록 공중합체의 구조 및 특성분석 43
3. 4. 산화안정성과 열안정성 평가 50
3. 5. 함수율과 팽창율 54
3. 6. 이온 교환 능력과 이온전도도 57
3. 7. 표면분석 60
4. 결론 62
참고문헌 64

최근 본 자료

전체보기

댓글(0)

0