메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학위논문
저자정보

임창대 (전북대학교, 전북대학교 일반대학원)

지도교수
유동진
발행연도
2018
저작권
전북대학교 논문은 저작권에 의해 보호받습니다.

이용수4

표지
AI에게 요청하기
추천
검색

이 논문의 연구 히스토리 (4)

초록· 키워드

오류제보하기
High temperature-proton exchange membrane fuel cells (HT-PEMFCs) (operating over 100°C) have several advantages: higher electro-catalyst tolerance toward CO, faster electrode reaction kinetics, simplified water and thermal managements, easier manipulation of combined heat and power (CHP) systems and minimization of expensive auxiliary units (i.e., external humidifier).
One method to operate PEMFCs at high temperature is to exploit phosphoric acid (PA) doped polybenzimidazoles (PBIs) polymer electrolyte, because of their high proton conductivity without additional humidification and outstanding fuel cell performance at elevated temperature.
Although poly[2,2''-(m-phenylen)-5,5''bibenzimidazol] (m-PBI) is being widely used as high temperature-proton exchange membrane (HT-PEM), it has two major problems such as low solubility and brittle character, due to less molecular flexibility in the main chain and the strong inter & intra-chain hydrogen bondings. Hence, in this study, benzophenone moiety and ether groups were introduced in main chain of polybenzimidazole in order to enhance flexibility and solubility. Initially, dicarboxylic acid monomer 4,4’-(benzophenone-4,4’-diylbis(oxy))dibenzoic acid (BDA) was synthesized from 4―hydroxybenzoic acid and 4,4’-difluorobenzophenone via nucleophilic aromatic substitution reaction. Next, benzophenone-containing polybenzimidazole (BDA-PBI) was synthesized from BDA and 3,3’-diaminobenzidine via polycondensation reaction. The m-PBI (reference polybenzimidazole) was synthesized in the same manner, isophthalic acid was used instead of BDA. Finally, polymer electrolyte membranes were prepared using afore-synthesized polymer powders by solution casting method.
The synthesize of dicarboxylic acid monomer and the polymers were confirmed by using proton nuclear magnetic resonance spectroscopy (1H-NMR) and Fourier transform-infrared spectroscopy (FT-IR). The thermogravimetric analysis (TGA) curve of BDA-PBI indicates that the residual weight of corresponding membrane is more than 60% at a high temperature of 800°C. Further investigations on thermal stability were done using differential scanning calorimetry (DSC). BDA-PBI shows a glass transition temperature (Tg) value of around 264°C. Overall, the BDA-PBI had sufficient thermal stability to sustain operating temperature of HT-PEMFCs. The proton conductivity of membranes were measured with a 4-probe cell by AC impedance spectroscopy. The resistance (Ω) of membranes were measured as a function of temperature without applying any external humidity. The conductivity of membranes were found to be increased as increase the temperature, due to rapid proton movement at high temperature. At 90°C, proton conductivity of PA doped m-PBI (7.9 mol PA/repeating unit) was 52.7 mS/cm, while that of PA doped BDA-PBI (7.6 mol PA/repeating unit) was 43.7 mS/cm. It is noteworthy that the acid-base interactions exerted between -NH group of benzimidazole and -OH group of PA create extended architecture of proton conducting channels, which leaded to rapid proton conduction via Grotthuss mechanism. Still, the proton conductivity of BDA-PBI is lower by 1.2 fold with respect to that of m-PBI. This is due to the lower number of repeating units in the synthesized BDA-PBI.
BDA-PBI exhibits excellent thermal and oxidative stability, and mechanical strength. While the membrane shows reasonable PA uptake and proton conductivity. The afore-mentioned results demonstrate that BDA-PBI membrane able to generate appropriate power density in HT-PEMFC under anhydrous condition.
achieve suitable PEM for the application of PEMFC.

목차

1. 서 론 1
1. 1. 연료전지의 원리 2
1. 2. 연료전지의 분류 4
1. 3. 고분자 전해질형 연료전지 6
1. 4. 고분자 전해질 8
1. 4. 1. 과불소계 고분자 전해질 10
1. 4. 2. 부분 불소계 고분자 전해질 13
1. 4. 3. 탄화수소계 고분자 전해질 15
1. 4. 4. 산-염기 고분자 전해질 19
2. 실 험 24
2. 1. 시약 및 재료 24
2. 2. 실험 방법 25
2. 2. 1. 4,4‘-(benzophenone-4,4-diylbis(oxy))dibenzoic
acid (BDA)의 합성 25
2. 2. 2. 고분자 합성 27
2. 2. 2. 1. Benzophenone-containing polybenzimidazole
(BDA-PBI)의 합성 27
2. 2. 2. 2. Poly(2,2''-(m-phenylene)-5,5''-
bibenzimidazole) (m-PBI)의 합성 27
2. 2. 3. 고분자 전해질의 제막 30
2. 3. 특성 분석 31
2. 3. 1. 용해도 시험 31
2. 3. 2. 양성자 핵자기 공명 분광법 31
2. 3. 3. 푸리에 변환-적외선 분광법 31
2. 3. 4. 열 중량 분석법 31
2. 3. 5. 시차주사 열량측정법 32
2. 3. 6. 펜톤 시험 32
2. 3. 7. 인산 흡수율 33
2. 3. 8. 이온 교환능 33
2. 3. 9. 양성자 전도도 34
3. 결과 및 고찰 35
3. 1. 디카복실산 단량체 및 고분자 합성과 제막 35
3. 2. 디카복실산 단량체와 고분자 구조 분석 38
3. 3. 열 특성 및 산화 안정도 44
3. 4. 이온 교환능 및 양성자 전도도 49
4. 결 론 52
참 고 문 헌 53

최근 본 자료

전체보기

댓글(0)

0