메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학위논문
저자정보

이병수 (충남대학교, 忠南大學校 大學院)

지도교수
윤현도
발행연도
2018
저작권
충남대학교 논문은 저작권에 의해 보호받습니다.

이용수1

표지
AI에게 요청하기
추천
검색

이 논문의 연구 히스토리 (7)

초록· 키워드

오류제보하기
Large-diameter reinforcements(maximum 57㎜) and amount of reinforcements (about 0.13 million ton, Shin-gori #3,4 project) are used in Nuclear Power Plant Structures in order to enhance the structural safety and secure the enough durability of structure. But the significant congestion occurs in the structures when a lot of reinforcements are placed, and also it may cause several potential problems during the construction. Because many types of systems and components, such as machine equipment, piping, electrical facilities, measurement equipment, shall be mounted on or penetrated through the Nuclear Power Plant Structures, it is necessary to install the embeded materials, such as embeded plates, embeded sleeves, embeded anchors, around the reinforcing bars. But because of the congestion of reinforcements, there are interference in the installation of the embeded materials and difficulty in pouring concrete. In particular, it is more difficult to pour concrete into structural member joint area than other areas because of the significant interference in hooked bars and embedded materials.
We hope that solve these problems due to the reinforcement congestion by using the large-sized diameter(43㎜ & 57㎜) with high-strength(ASTM A615 Gr.80) headed deformed bars of in Nuclear Power Plant Structures as a alternative of standard hooked bars. For this, it is necessary to find the method how to relax limits on their use while maintaining or improving the anchorage capacity. Therefore, it is required to look into the results of tests planned to evaluate the influence of the restricted variables, such as bar size, yield strength, clear cover thickness. Also the usefulness of relaxed limits has to be checked and new equations for the required design development length of headed deformed bars may be established if necessary.
If it is possible to resolve the problem of the reinforcing bar congestion by replacing standard hooked bars with headed deformed bars in beam-column joints of Nuclear Power Plant Structures, it can paly a prominent part in strengthening global competitiveness of Korean Nuclear Power Plant.
In order to applying the large-Diameter headed deformed bars with high yield strength in Nuclear Power Plant Structures, it is necessary to change the code for concrete containment(ASME Sec.Ⅲ Div.2, KEPIC SNB) and nuclear safety-related concrete structures(ACI 349, KEPIC SNC). Therefore design requirements for development length of the headed deformed bars and technological background of design requirement was considered in several different ways.
First, Lap splice test(2006) & CCT node test (2005, 2006) performed by Thompson and shallow embedment test (1999) & side-blowout test (1998) performed by DeVries were considered briefly and the method how to have been reflected in ASME Sec.Ⅲ. Div.2, ACI 349, KEPIC SNB & SNC code was examined.
Various experimental studies were performed to evaluate the anchorage capacity of headed deformed bars beyond the limit conditions of current design requirements after Thompson and DeVries studies. The list of tests are follows;
(1) Test to evaluate the anchorage capacity of the headed deformed bars placed in TTC node (Hanyang university)
(2) Test to evaluate the anchorage capacity of the headed deformed bars used as lap splice (Mockpo National University, Incheon National University)
(3) Test to compare the anchorage capacity of the headed deformed bars and standard hooked bars developed in exterior Beam-Column Joint (Mockpo National University, Incheon National University, Kansas University)
Secondly, test matrix and results mentioned above were checked and correlations between development length and anchorage capacity affected by transverse reinforcement index, clear cover of reinforcement and confinement terms were analysed.
It is necessary to find out the method how to relax limits on their use while maintaining or improving the anchorage capacity in order to apply the headed deformed bars in Nuclear Power Plant Structures effectively. Therefore, development length equations of the headed deformed bars beyond limit conditions, such as size, yield strength and clear cover thickness of bars were suggested through this study.

목차

제1장 서 론 1
1.1 연구 배경 1
1.2 연구 목적 4
1.3 연구 범위 및 내용 7
제2장 현행 설계기준 및 선행연구 9
2.1 현행 설계기준 9
2.1.1 설계기준 문제점 9
2.1.2 표준갈고리철근 (Standard Hooked Bars) 11
2.1.3 확대머리철근 (Headed Deformed Bar) 15
2.2 현행 설계기준 실험연구 18
2.2.1 인발실험 (Pullout Test) 18
2.2.2 CCT절점 및 겹침이음 실험 21
2.2.3 보기둥 접합부 표준갈고리 실험 23
2.3 확대머리철근의 추가실험 연구 24
2.3.1 겹침이음 부위 확대머리철근의 정착실험 24
2.3.2 철근절단(Cut-off) 부위 확대머리철근의 정착실험 28
2.3.3 외부 보-기둥 접합 부위 확대머리철근의 정착실험 31
2.3.4 외부 보-기둥 접합 부위 표준갈고리철근의 정착실험 33
제3장 부위별 확대머리철근 정착길이 평가 36
3.1 철근의 겹침이음 부위 36
3.1.1 콘크리트 압축강도()와 정착강도()의 관계 38
3.1.2 정착길이()와 정착강도()의 관계 38
3.1.3 정착길이() 회귀분석 및 횡구속의 영향 검토 39
3.1.4 횡구속 영향을 반영한 정착길이() 산정식 41
3.1.5 정착길이 산정식 검증 42
3.2 철근의 절단(Cut-Off) 부위 42
3.2.1 콘크리트 압축강도()와 정착강도()의 관계 43
3.2.2 정착길이()와 정착강도()의 관계 44
3.2.3 정착길이() 회귀분석 및 횡구속의 영향 검토 45
3.2.4 횡구속 영향을 반영한 최소 정착길이() 산정식 46
3.2.5 정착길이 산정식 검증 49
3.3 보-기둥 접합 부위 (확대머리철근) 50
3.3.1 콘크리트 압축강도()와 정착강도()의 관계 52
3.3.2 정착길이()와 정착강도()의 관계 52
3.3.3 정착길이() 회귀분석 및 횡구속의 영향 검토 53
3.3.4 횡구속 영향을 반영한 최소 정착길이() 산정식 55
3.3.5 정착길이 산정식 검증 58
3.4 보-기둥 접합 부위 (표준갈고리철근) 59
3.4.1 정착길이() 회귀분석 및 횡구속의 영향 검토 62
3.4.2 횡구속 영향을 반영한 최소 정착길이() 산정식 63
3.4.3 정착길이 산정식 검증 66
제4장 정착길이 산정식 제안 67
4.1 겹침이음 및 TTC절점 부위 68
4.2 보-기둥 접합 부위 71
4.3 부위별 정착길이 설계식 75
4.4 확대머리철근 정착길이 설계식 77
제5장 결론 80
<참고문헌> 82
<부 록> 제안 설계기준 ⅰ
ⅹⅵ

최근 본 자료

전체보기

댓글(0)

0