메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학위논문
저자정보

전철웅 (부경대학교, 부경대학교 대학원)

지도교수
손정현
발행연도
2018
저작권
부경대학교 논문은 저작권에 의해 보호받습니다.

이용수1

표지
AI에게 요청하기
추천
검색

이 논문의 연구 히스토리 (12)

초록· 키워드

오류제보하기
Abstract

Main objective of this study are as follows;
① To carry out the coupled analysis between ISPH and MBD.
② To define the computational method of interaction between particle based fluid and floating body.
③ To develop the coupled analysis program of ISPH and MBD.
④ To introduce the developed program by applying the behavior analysis of floating-type WEC in wave conditions.

In this study, ISPH method was emplyed to calculate the motion of the fluid. GPGPU based parallel ISPH solver was developed to decrease the computational time. When the number of particles is about 100,000, the parallel process is faster fifty times than sequence process. To verify the ISPH analysis solver, the SPH tool of ABAQUS and ANSYS Fluent were used. The dam-breaking and lid-driven cavity flow simulation are carried out to verify the developed code. In the dam-breaking simulation, the shape of free surface, the velocity and the pressure of fluid are compared with ABAQUS. The shape of free surface and the velocity of fluid show good agreements. Regarding the pressure fields, the pressure noise is verified with ABAQUS result, on the other hand, ISPH significantly reduces the pressure noise in comparison with ABAQUS.
Multi-body dynamics program is developed to analyze the dynamic behavior of the multi-body system. Cartesian coordinates and Euler parameters are used to define the translational motion and the rotational motion. RecurDyn which is a commercial multi-body dynamics program developed by FunctionBay is used to verify the MBD solver. Result of MBD solver show a good agreement with RecurDyn. The computational algorithm for the coupled analysis is defined, and FAMCAP(Fluid and Multi-body dynamics Coupled Analysis Program) that is in-house program was developed. The fluid-body interaction technique is developed at the acceleration level to solve the coupled problem. The fluid force is calculated from the acceleration of rigid particles and it is applied to the rigid body as the external force. The coupled analysis between ISPH and MBD is carried out by using this technique.
For an application of the developed program, the dynamic behavior of floating-body type wave power generation system is considered. A numerical wave maker based on the linear wavemaker theory and the wave absorber using an exponential function to remove the reflected wave from the opposite boundary are used. The experiment is carried out to verify the wave motion reproduced by ISPH and the pendulum model is used to verify the simulation of fluid-body interaction. The wave height, wave period and the pendulum motion of a body were compared with experiments. The wave motion for nine wave conditions is compared, and the pendulum motion for five wave conditions of rigid was compared. In the case of wave motion, simulation results show a good agreement with experiments. In the case of pendulum motion of body, R.M.S. error of the amplitude for each period is calculated and showed an error of maximum 12.2%.
The dynamic behavior of floating type wave energy converter(WEC) is analyzed. The WEC system used in this study consists of the hydrodynamic subsystem and the power take-off(PTO) subsystem. A rectangular shaped floating body is considered. The regular and irregular wave conditions are considered for the motion of floating type WEC system. The irregular wave is reproduced by the superposition of two or more wave conditions based on the linear wave maker theory. The motion of a floating body shows the tendency similar to the wave motion. When the floating body pulls and releases the rope, the rotational motion of generator shows a distinct difference.
As a mentioned, the rotational velocity of the generator is decreased when the rope pulls the floating body. Since the power of the generator is determined by the rotational velocity of the generator, the same tendency is verified. The FAMCAP can be utilized not only in the modeling of the particle-based fluid and the multi-body system but also the coupled analysis between ISPH and MBD. The efficient computing is possible by using the NVIDIA''s CUDA. As a result, It is considered that the FAMCAP can be applied to the problem of the coupled analysis of fluid and multi-body system.

목차

목 차
List of Tables IV
List of Figures V
List of Nomenclature X
1. 서 론 1
1.1. 연구 배경과 동향 1
1.1.1. 파력발전기(wave energy converter) 1
1.1.2. 입자완화유체동역학(smoothed particle hydrodynamics, SPH) 5
1.1.3. 연성 해석(coupled analysis) 9
1.2. 연구 목적 및 범위 11
2. 입자완화유체동역학 해석 프로그램 13
2.1. 입자완화유체동역학 개요 13
2.1.1. 입자완화유체동역학 보간법 13
2.1.2. 커널 함수 15
2.1.3. SPH gradient 20
2.1.4. SPH divergence 22
2.2. 비압축성 입자완화유체동역학 23
2.2.1. 비압축성 입자완화유체동역학 알고리즘 23
2.2.2. 예측단계의 이산화방정식 27
2.2.3. 압력 포아송 방정식 28
2.2.4. 수정단계의 이산화방정식 29
2.2.5. 경계조건 30
2.3. 비압축성 입자완화유체동역학 해석 프로그램 34
2.3.1. 비압축성 입자완화유체동역학 알고리즘 35
2.3.2. 압력-포아송 방정식 계산 알고리즘 36
2.3.3. Neighboring cell 알고리즘 38
2.3.4. 예측-수정 단계에 의한 적분 39
2.4. GPGPU 병렬 컴퓨팅 41
2.5. 상용 해석프로그램을 이용한 검증 44
2.5.1. 댐 붕괴 시뮬레이션 44
2.5.2. Lid-driven cavity flow 시뮬레이션 52
3. 다물체동역학 해석 프로그램 56
3.1. 3차원 시스템의 운동방정식 56
3.2. HHT-I3 내재적 수치적분 59
3.3. 해석적 미분방정식 63
3.4. 기구 구속방정식 66
3.5. 다물체동역학 해석 프로그램 구성 70
3.6. 상용 해석프로그램을 이용한 검증 79
4. ISPH와 MBD 연성해석 프로그램 89
4.1. 유체와 부유체의 상호작용 91
4.2. 조파기 및 소파기 모델 95
4.3. 파랑 계측 실험 98
4.3.1. 실험 장치 구성 98
4.3.2. 조파기 운동 계측 및 모델링 101
4.3.3. 파고 계측 108
4.4. 부유체 운동 계측 실험 111
4.4.1 부유체 및 구속 장치 111
4.4.2 부유체 진자 운동 계측 113
4.5. 해석 프로그램 검증 114
4.5.1 파랑 재현 시뮬레이션 검증 114
4.5.2 부유체 진자 운동 검증 121
5. 부유식 파력발전시스템 적용 및 분석 126
5.1. 부유식 파력발전시스템 구성 126
5.1.1. 동수력 서브시스템 128
5.1.2. 동력인출장치 129
5.2. 부유식 파력발전시스템 모델링 134
5.3. 규칙파에서의 부유식 파력발전시스템 해석 136
5.4. 불규칙파에서의 부유식 파력발전시스템 해석 142
6. 결 론 148
참고문헌 151

최근 본 자료

전체보기

댓글(0)

0