메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학위논문
저자정보

이준원 (연세대학교, 연세대학교 정보대학원)

지도교수
권태경
발행연도
2019
저작권
연세대학교 논문은 저작권에 의해 보호받습니다.

이용수6

표지
AI에게 요청하기
추천
검색

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
비트코인은 탈중앙화와 분산원장을 특징으로 하는 암호화폐로서 “작업증명”이라는 채굴시스템을 통해 유지된다. 채굴 시스템에서는 블록 생성시간을 일정하게 유지하기 위해 채굴 난이도를 조정하게 되는데, 기존의 채굴 난이도 변경 방식은 미래의 해시파워를 반영할 수 없다는 문제가 있다. 따라서 실제시간과 예정시간 사이에 발생하는 오차로 인해 블록생성과 실세계 시간의 불일치를 가중시키게 되고, 결국 거래 기한을 맞추지 못하거나 코인 호핑 공격에 취약점을 노출시키게 된다. 블록 생성시간을 일정하게 유지시키기 위한 기존 연구도 여전히 오차 문제를 갖는다. 본 연구에서는 이러한 오차를 줄이기 위한 기계학습 기반 채굴 난이도 예측 방안을 제시한다. 이전 해시파워를 학습하여 미래의 해시파워를 예측하고 예측한 값을 이용하여 채굴 난이도를 조정한다. 우리의 실험 결과는 이와 같은 경우 기존 채굴 난이도 조정방식보다 오차율을 약 36% 더 줄일 수 있음을 보여준다.

목차

등록된 정보가 없습니다.

최근 본 자료

전체보기

댓글(0)

0