메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학위논문
저자정보

유경호 (조선대학교, 조선대학교 일반대학원)

지도교수
양희덕
발행연도
2018
저작권
조선대학교 논문은 저작권에 의해 보호받습니다.

이용수1

표지
AI에게 요청하기
추천
검색

이 논문의 연구 히스토리 (4)

초록· 키워드

오류제보하기
Recently, 3D contents used in various fields have been attracting people''s attention due to the development of virtual reality and augmented reality technology. In order to produce 3D contents, it is necessary to model the objects as vertices. However, high-quality modeling is time-consuming and costly. In this work, we propose a method, based on conditional adversarial network, for automatic extraction of line drawings that show the geometrical characteristics of 3D models in 2D cartoon painting.
Drawing-based modeling among non-photorealistic expressions is a technique that shortens the time required for modeling. It refers to creating a 3D model based on a user''s line drawing or sketch. Line drawings are used to represent the shape of objects using a line that is a minimum of data. Line drawings require feature line extraction to determine which part of the object should be represented as a line. Extracting feature lines provides more information about a 3D model.
In order to convert a 2D character into a 3D model, it is necessary to express it as line drawings through feature line extraction. The extraction of consistent line drawings from 2D cartoon cartoons is difficult because the styles and techniques differ depending on the designer who produces them. Therefore, it is necessary to extract the line drawings that show the geometrical characteristics well in 2D cartoon shapes of various styles. This study proposes a method of automatically extracting line drawings. The 2D Cartoon shading image and line drawings are learned by using conditional adversarial network model, which is artificial intelligence technology and outputs 2D cartoon artwork of various styles. Experimental results show the proposed method in this research can be obtained as a result of the line drawings representing the geometric characteristics when a 2D cartoon painting as input.

목차

ABSTRACT
Ⅰ. 서 론
A. 연구의 배경 및 목적
B. 연구 내용
Ⅱ. 관련연구
A. 기하학적 특징선
B. Autoencoder
C. Convolutional Neural Network
D. Generative Adversarial Network
E. 드로잉 기반 모델링
Ⅲ. Line drawing 추출, 검출, 생성
A. 3D 모델의 line drawing 추출
B. Line drawing 검출 및 생성
Ⅳ. 실험 및 결과 분석
A. 실험 환경
B. 실험 결과 분석
Ⅴ. 결론
참고문헌

최근 본 자료

전체보기

댓글(0)

0