메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학위논문
저자정보

김현묵 (부경대학교, 부경대학교 대학원)

지도교수
김정수
발행연도
2019
저작권
부경대학교 논문은 저작권에 의해 보호받습니다.

이용수2

표지
AI에게 요청하기
추천
검색

이 논문의 연구 히스토리 (4)

초록· 키워드

오류제보하기
A numerical analysis was carried out to study the gas-steam ejection system. For the analysis, pressure based solver, realizable - turbulence model, and standard wall function were used. In order to simulate the interaction of hot gas and coolant, which are different materials, VOF (Volume Of Fluid) model and Discrete Phase Model Was used. To simulate the motion of the projectile, a dynamic grid system was used to expand the analysis area in conjunction with the mixture-gas pressure information inside the breech. Pressure-velocity coupling method of PISO (Pressure-Implicit with Splitting of Operators) algorithm is used to prevent calculation of inaccurate pressure gradient due to oscillating pressure value. The gradient of the scalar value for the spatial discretization uses the least squares cell-based method and the discretization for each physical value uses second-order upwind scheme. The time discretization for the transient calculation was performed using the first-order implicit method. In the same hot gas condition, gas-gas analysis assuming a very fast coolant evaporation rate and gas-liquid analysis assuming liquid coolant were respectively performed to predict the temperature, pressure, streamline, coolant distribution and evaporation of the mixture-gas in the canister breech, and the acceleration and velocity of the projectile. As a result, the spatial temperature distribution inside the breech was influenced by the mixture-gas flow and distribution of coolant. The temperature of mixture-gas varied greatly depending on the presence or absence of coolant. but the rate of decrease in pressure tended to be lower than the rate of decrease in temperature. This tendency was more showed when the mass flow rate of the mixture-gas was increased. Therefore, it was confirmed that the key design factor for optimizing the gas-steam ejection system is to minimize the pressure drop and maximize the cooling effect by controling the evaporation of the coolant.

목차

Ⅰ. 서 론 1
1. 연구배경 및 목적 1
가. 배경 1
나. 목적 2
2. 연구현황 3
가. 국외연구현황 3
나. 국내연구현황 7
Ⅱ. 수치해석 방법 8
1. 압력 기반 해석자 8
2. 난류모델 10
3. 벽법칙 13
4. 다상유동모델 18
가. VOF (Volume Of Fluid) 모델 18
나. 이산상모델 20
5. 동적격자계 24
6. Pressure-velocity coupling 29
7. 이산화 32
가. 공간이산화 32
나. 시간이산화 35
8. 3차원 계산모델의 형상 및 격자 36
가. 기체-기체 해석 36
나. 기체-액체 해석 38
Ⅲ. 해석 설정 검증 40
Ⅳ. 기체-기체 해석 47
1. 해석조건 47
2. 해석결과 48
Ⅴ. 기체-액체 해석 59
1. 해석조건 59
2. 해석결과 60
Ⅵ. 결 론 77
참고문헌 79

최근 본 자료

전체보기

댓글(0)

0