메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학위논문
저자정보

이규정 (부경대학교, 부경대학교 대학원)

지도교수
김권후
발행연도
2019
저작권
부경대학교 논문은 저작권에 의해 보호받습니다.

이용수7

표지
AI에게 요청하기
추천
검색

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
Because of low density and high specific strength, Magnesium alloys have been paid an attention in various fields such as the automobile industry. However, AZ system magnesium alloy shows poor creep resistance during high-temperature and constant stress needed in power transmission device occupied quarter of weight of car. Many researchers were found that creep resistance is improved by containing manganese on magnesium so called; M1 magnesium alloy which can be a suitable solid-solution alloy. Despite these advantages, there still remains a problem that the hcp crystal structure alloys formed a strong basal texture during high temperature deformation, which makes hard to subsequent deformation and affects mechanical property. It is generally known that the basal texture is formed by dynamic recrystallization, but there seem no studies on the microstructural development during high-temperature on the M1 magnesium alloy. In this study, microstructure evolution and crystallographic orientation are investigated under various deformation conditions in M1 magnesium alloy. M1 magnesium ingot was rolled at 673 K with a rolling reduction of 30 %. The compression tests specimens were fabricated with the compression plane of the specimens are parallel to the rolling plane, and then the specimens were annealed at 823 K for 1h. Uniaxial compression tests were conducted at 723 K and under a strain rate ranging from 5.0x10-4 s-1 to 5.0x10-2 s-1 up to a true strain of ?1.0. For observation of crystal orientation distribution, EBSD measurement was performed. Occurrence of the dynamic recrystallization and grain boundary migration were confirmed in all case of the specimens. The distribution of the grains is not uniformed in the experimental conditions.

목차

1. 서론 1
2. 이론적 배경 3
2.1. 마그네슘의 슬립변형 3
2.2. 금속의 재결정 5
2.3. 결정방위 7
3. 실험방법 10
3.1. 시료 준비 10
3.2. 열간압연 및 단축압축 시험편 제작 11
3.3. 고온단축압축 실시 14
3.4. 미세조직 및 결정방위 측정 15
4. 실험결과 및 고찰 18
4.1. 진 응력 - 진 변형률 곡선 18
4.2. 미세조직 관찰 18
4.3. 결정립 크기 분포 관찰 28
4.4. 결정립 내부 방위차 관찰 33
5. 결론 40
참고문헌 41

최근 본 자료

전체보기

댓글(0)

0