메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학위논문
저자정보

박재은 (한동대학교, 한동대학교 일반대학원)

지도교수
김영근
발행연도
2019
저작권
한동대학교 논문은 저작권에 의해 보호받습니다.

이용수3

표지
AI에게 요청하기
추천
검색

이 논문의 연구 히스토리 (4)

초록· 키워드

오류제보하기
Magnetorheological elastomer(MRE), the smart rubber, is easy to change its shape and has characteristic of changing its stiffness according to the amount of magnetic field. Due to this characteristic, it is usually applied to many industries such as automobile, drone, robot, and so on. However, because of nonlinear-time varying characteristic of MRE, it is not practically used in the fields.
This paper proposes nonlinear-time varying characteristic control of the smart rubber and control system design of the smart rubber based tunable vibration absorber using reinforcement learning. Reinforcement learning is used to optimize and to solve complex problems in various fields and is applied in nonlinear and complex system optimization. Reinforcement learning and control system are verified by using the smart rubber based tunable vibration absorber. The tunable vibration absorber, developed in the previous research, is able to generate magnetic field from 0 to 340mT. The reinforcement learning model is designed to find the magnetic field that minimizes the vibration of the system when the disturbance vibration is applied to the target system. In order to verify the learning performance depending on the domain, the learning is performed in both frequency and time domain.
As a result, learning using the frequency spectrum in frequency domain learning converges very strongly and is distributed in the main magnetic field band for vibration isolation. However, characteristic of converging only in the main magnetic field prevents precise vibration control for various vibrations. In the time domain, the reinforcement learning used the most recently acquired data instead of frequency spectrum and had an opposite result with the learning in frequency domain. While the frequency domain learning had rapid convergence, the time domain learning did not converge for the various vibration. However, time domain learning converges not only to the main magnetic field but also to other magnetic fields for vibration isolation. The reason of different learning convergence rate between the frequency and time domain is analyzed as diversity of input data. Signals of the same amplitude have the same spectrum in the frequency domain, but are changed in various forms by drawing a sine wave in the time domain. Therefore, the result is analyzed that relatively static input data in the frequency domain allows the learning to be converged only to the main magnetic field at high, while it converges slowly but exactly in the time domain where the input data change is relatively large. it is necessary to find proper convergence rate and direction for reinforcement learning based control system for a Tunable Vibration Absorber. The rate and direction could be found through modifying network structure and hyperparameter of reinforcement learning.

목차

1.서론
1.1 스마트 고무 배경 1
1.1.1 스마트 고무 개요 1
1.1.2 스마트 고무 응용 연구 1
1.1.3 자기장발생기 소형화 발전 연구 2
1.2 스마트고무 상용화의 어려움 3
1.3 강화학습을 통한 문제 접근 6
1.3 연구 목표 7
2.스마트고무 기반 진동흡수기 하드웨어 설계
2.1 자기유변탄성체(MRE) 제작 8
2.2 스마트고무 기반 강성가변 진동흡수기 설계 9
2.3 실험환경 구성 12
3.강화학습기반 진동흡수 제어시스템 설계
3.1 개요 14
3.2 자기장발생기 모터구동 알고리즘 설계 17
3.3 보상주기결정: 지연보상시스템의 즉각보상화 21
3.4 강화학습을 위한 상태, 행동, 보상 산출 24
3.5 강화학습 알고리즘 및 프로그래밍 구현 31
4.강화학습기반 진동흡수기 성능 시험
4.1학습 실험환경 구성 36
4.2 강화학습 모델 네트워크 구조 38
4.3 실험 결과 40
4.3.1 주파수 도메인에서의 강화학습 결과 41
4.3.2 시간 도메인에서의 강화학습 결과 42
5.결론 및 향후 계획 45
REFERENCES 47

최근 본 자료

전체보기

댓글(0)

0