지원사업
학술연구/단체지원/교육 등 연구자 활동을 지속하도록 DBpia가 지원하고 있어요.
커뮤니티
연구자들이 자신의 연구와 전문성을 널리 알리고, 새로운 협력의 기회를 만들 수 있는 네트워킹 공간이에요.
이용수4
Chapter 1 Introduction and Background 11.1 Viscoelasticity 11.2 Rheological measurement techniques 51.3 Oscillatory shear rheology 81.4 Nonlinear oscillatory shear measurements 101.5 Aims of this thesis 13Chapter 2 Oscillatory Shear Rheology: Theory 172.1 Small amplitude oscillatory shear (SAOS) 172.2 Large amplitude oscillatory shear (LAOS) 212.2.1 Distortion in stress response 232.2.2 Mathematical descriptions of nonlinear oscillatory shear stress 232.2.3 Quantitative analysis methods for LAOS 262.2.4 Fourier-transform (FT) rheology 312.3 Medium amplitude oscillatory shear (MAOS) 332.3.1 Asymptotics in oscillatory shear stress 352.3.2 Why MAOS test 362.4 MAOS material functions 382.4.1 Power-series coefficients 382.4.2 Relative nonlinearities from FT rheology 532.4.3 Interrelation with Chebyshev measures 622.4.4 Advantages of using relative nonlinearities in polymer rheology . 632.5 Pipkin diagram 652.6 Correction of stress response measured by parallel-plate geometry 672.6.1 Single-point correction (vertical shifting) 682.6.2 Shear-rate correction (horizontal shifting) . 722.7 Model predictions for oscillatory shear response . 72Chapter 3 Dynamics of Polymers: Tube Models . 793.1 Polymer architectures . 793.2 Tube models . 823.2.1 Reptation . 843.2.2 Contour length fluctuation (CLF) . 843.2.3 Constraint release (CR) 883.2.4 Hierarchical relaxation and dynamic tube dilution (DTD) . 88Chapter 4 Comparison of Effects of Cone-plate and Parallel-plate Geometries on Rheological Properties under Oscillatory Shear Flow . 934.1 Introduction 934.2 Experimental . 954.2.1 Single-phase system . 954.2.2 Multiphase system 964.2.3 Rheological measurements . 974.3 Results and discussion 984.3.1 SAOS data correction . 984.3.2 LAOS data correction . 1004.3.3 Vertical and horizontal shifting for xanthan gum solutions . 1124.4 Conclusion 126Chapter 5 Deriving New MAOS Analytical Solutions for Polymer Melts and Solutions from Nonlinear Rheological Constitutive Models 1295.1 Introduction 1295.2 Derivation of new MAOS analytical solutions 1315.2.1 Johnson-Segalman (JS) model . 1345.2.2 Phan-Thien-Tanner (PTT) model . 1365.2.3 Leonov model . 1445.2.4 Larson model 1485.2.5 Pom-Pom model . 1515.2.6 Rouse linear entangled polymers (Rolie-Poly) model 1555.2.7 Coupled double-convection-reptation with chain stretch (cDCR-CS) model 1675.3 Summary of known solutions . 1745.3.1 White-Metzner (WM) model with Carreau viscosity . 1745.3.2 Giesekus model 1755.3.3 Molecular stress function (MSF) model . 1795.3.4 Corotational Maxwell (CRM) model . 1805.3.5 Separable K-BKZ model with PSM-type damping function 1815.4 Categorizing constitutive models based on time-strain separability 1835.5 Conclusion 184Chapter 6 Dilution Effect of Semidilute Polymer Solution on Intrinsic Nonlinearity Q0 via FT Rheology 1876.1 Introduction 1876.2 Experimental . 1906.2.1 Materials . 1906.2.2 Rheological measurements . 1926.3 Results and discussion 1936.3.1 SAOS experiments . 1936.3.2 MAOS experiments 2006.3.3 Maximum Q0 values at different concentrations 2176.3.4 Comparison between melt and solution data 2236.3.5 Comparison between static dilution and dynamic dilution 2256.4 Conclusion 230Chapter 7 Decomposition of Q0 from FT Rheology into Elastic and Viscous Parts: Intrinsic-nonlinear Master Curves for Polymer Solutions 2337.1 Introduction 2337.2 Experimental . 2357.3 Results and discussion 2367.3.1 Linear and intrinsic-nonlinear master curves . 2367.3.2 Characteristic relaxation times in intrinsic-nonlinear master curves 2507.3.3 Single-mode constitutive predictions using MSF and Pom-Pom models 2557.3.4 Multimode MSF prediction 2647.4 Conclusion 267Chapter 8 First-harmonic Intrinsic Nonlinearity of Model Polymer Solutions in Medium Amplitude Oscillatory Shear (MAOS) 2698.1 Introduction 2698.2 Experimental . 2718.3 Results and discussion 2728.3.1 First-harmonic MAOS moduli of linear PS solutions 2728.3.2 Multimode MSF prediction 2848.3.3 Pipkin diagram 2858.4 Conclusion 290Chapter 9 Evaluating Predictability of Various Constitutive Equations for MAOS Behavior of Entangled Polymer Solutions 2959.1 Introduction 2959.2 Multimode MAOS predictions using analytical solutions . 2969.2.1 Time-strain separable models . 2989.2.2 Time-strain inseparable models 3029.2.3 Optimum model parameter as a function of entanglement number 3139.3 Conclusion 315Chapter 10 Small and Medium Amplitude Oscillatory Shear Rheology of Model Branched Polystyrene (PS) Melts 31910.1 Introduction 31910.2 Experimental . 32210.2.1 Materials . 32210.2.2 Rheological measurements . 32410.3 Results and discussion 32410.3.1 SAOS results 32410.3.2 Hierarchical modeling 32710.3.3 MAOS results . 33410.3.4 Comparison of rheological parameters with characteristic relaxation times 34410.4 Conclusion 351Chapter 11 Conclusion and Outlook 355References 361Appendix A Determination of Onset of Entanglements in Polymer Solutions . 395Appendix B Solvent Contribution to Nonlinearities of Semidilute Polymer Solutions 399Appendix C Inflection Point Calculation from Pom-Pom Model 403Appendix D Relative Nonlinearities and Multimode MSF Predictions of PS300 Series Solutions 407Appendix E Multimode Model Predictions for PS300 Series Solutions 415Appendix F MATLAB Code for Optimization of Model Parameters . 443요약 449Curriculum Vitae 451Acknowledgements 459
0