메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학위논문
저자정보

이민지 (공주대학교, 공주대학교 일반대학원)

지도교수
추연욱
발행연도
2021
저작권
공주대학교 논문은 저작권에 의해 보호받습니다.

이용수9

표지
AI에게 요청하기
추천
검색

이 논문의 연구 히스토리 (3)

초록· 키워드

오류제보하기
For the design of offshore monopiles to support wind turbines, the monopiles embedded into the ground are replaced with a series of springs, called stiffness matrix. These springs are attached at the surface between the tower and ground to analyze the natural frequency of the overall offshore wind structures, including turbine, tower, and foundations. For these reasons, the p-y curve is an essential parameter for evaluating the monopile''s stiffness matrix and its geotechnical stability. API code adopts on the conventional formula in the past decades, wherein this formula were derived based on field pile load tests with piles with diameter less than 2m. Therefore, many questions have been raised in using the conventional p-y curve from the API code, especially in designing offshore wind turbine monopiles with large diameters. In 2013, the PISA method provided a new strategy in analyzing pile and soil interaction base on the cone penetration tests (CPT). Also, this method were derived from several field test and FEM analysis (using in-situ condition) or combination. As a result an empirical equation (in a form of one dimensional parameters) was produce considering field and lab conditions. However, some issues have been still pointed out when considering shallow depths and multi layered subsurface. Moreover, the availability of physical modelling data on the previous study were not enough in providing more comprehensive analysis relative to the increasing monopile diameter. The aim of this study is to evaluate each formula and provide a comparative analysis for large monopile diameter based on several testing conditions. Thus, the present study performed centrifuge tests to investigate the effect of loading height from the ground surface and end bearing conditions on the p-y curve. In particular, the testing setup was composed of a 7 m-diameter monopile installed in sand and sand-over-rock, with two loading heights of one and five times the monopile diameter from the ground surface. Embedded lengths in the sand were 2.67 (sand-over-rock condition) and 4.67 (uniform sand condition) times monopile diameter. The sand and rock were prepared as "medium sand" and "stiff rock", respectively. The centrifuge model tests were conducted at an acceleration of 68.83g using well-instrumented model monopiles. As a result, the experiment reveals that the p-y curves are not influenced by loading height from the ground surface. It is confirmed that the rock socketed monopile shows a very high initial stiffness of p-y curve. Hence, the findings of the present study confirms the limitations and issues raised by previous research when considering large diameter and shallowly embedded pile foundations for API and CPT based p-y curves, respectively.

목차

1. 서론 1
1.1. 연구 배경 1
1.2. 연구 방법 및 목표 3
1.3. 논문의 구성 4
2. 문헌연구 5
2.1. 해상풍력 발전기 기초구조물 형식 5
2.2. 수평지반반력 해석법 7
2.3. 비선형 해석법(p-y 곡선) 8
2.3.1. Reese 등 (1974) 9
2.3.2. O''Neil과 Murchison (1983)의 방법 12
2.4. 콘관입시험(CPT) 결과 기반의 p-y 해석법(PISA) 14
2.5. 원심모형실험을 통한 p-y 해석법 16
3. 모노파일의 수평지지거동 분석을 위한 원심모형실험 18
3.1. 원심모형실험 개요 18
3.2. 원심모형실험 조건 20
3.3. 모형 모노파일 설계 21
3.4. 모형지반 조성 22
3.4.1. 모래의 지반물성 22
3.4.2. 암석의 지반물성 24
3.4.3. 모형 지반 조성절차 25
3.5. 실험시스템 27
3.5.1. 하중재하장비 27
3.5.2. 계측 장비 29
3.6. 원심모형실험 절차 36
4. 원심모형실험 결과 및 분석 38
4.1. 하중-변위 곡선 38
4.1.1. 모노파일의 지표면에서 수평변위(y0) 38
4.1.2. 하중-변위 곡선 39
4.2. 실험 p-y 곡선 40
4.2.1. p-y 곡선 산정 40
4.2.2. 실험 p-y 곡선 48
5. 모노파일의 수평지지거동 분석을 위한 수치해석모델 51
5.1. LPile 수치해석 모델 51
5.1.1. 대상구조물 제원 51
5.1.2. 지반 물성 51
5.2. API Formulation 53
5.3. PISA 해석법 (Suryasentana & Lehane, 2016) 54
6. 수치해석 결과 및 비교 55
6.1. 하중-변위 관계 곡선 55
6.2. p-y곡선 59
7. 결론 및 향후연구 64
7.1. 요약 및 결론 64
7.2. 향후 연구 65
참고문헌 66
ABSTRACT* 69

최근 본 자료

전체보기

댓글(0)

0