메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학위논문
저자정보

김현진 (전북대학교, 전북대학교 일반대학원)

지도교수
유동진
발행연도
2022
저작권
전북대학교 논문은 저작권에 의해 보호받습니다.

이용수0

표지
AI에게 요청하기
추천
검색

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
Fuel cell is a energy conversion device that converts chemical energy into electrochemical energy, and is receiving a lot of attention as a very efficient device with low greenhouse gas emission. In particulary, anion exchange membrane fuel cell(AEMFC) have been developed as a alternative to proton exchange membrane fuel cells(PEMFCs) owing to high energy efficiency and usage of non-platinum catalyst.
In this study, composite membranes were prepared for 5 species with various content of functionalized GO(GO-Im) to investigate electrochemical performance and physical/chemical properties of AEM. First, branched poly(arylene ether sulfone)(BPAES) and poly(phenylene oxide)(PPO) were synthesized, followed by the chloromethylation reaction proceeded. After mixing two synthesized polymers, GO-Im was added in various content to prepare a composite membranes.
The chemical structure of the polymers used for blending was confirmed through 1H-NMR and FT-IR, and the degree of chloromethylation of CM-BPAES and CM-PPO was confirmed to be about 4-50%. Subsequently, the successful functionalization of GO nanosheets was achieved through hydrolysis and substitution reaction using (3-chloropropyl)trimethoxysliane(CTMS) and 1-methylimidazole. XPS and FT-IR analysis proved introduction of functional group into GO nanosheets. Additionally, introduced functional groups were confirmed through FE-SEM and EDS mapping. The thermal properties of the prepared membranes were confirmed by TGA and DSC. Water uptake, swelling ratio, and ion exchange capacity(IEC) were performed to characterize membranes. Overall, when the GO-Im content increased, the ionic conductivity tended to increase, but the excessive introduction of GO-Im reduced the number of ion conducting channels due to aggregation, confirming that the ionic conductivity was low. This indicates that the introduction of an appropriate amonunt of inorganic material is essential for the electrochemical performance. The QBPAES/PPO-GO-Im-0.9wt% composite membrane had a high water uptake and suitable dimensional stability, and achieved a high ionic conductivity of 116 mS cm-1 at 90 ℃. As a result, the prepared composite membrane have an excellent potential as an AEM for AEMFC.

목차

List of tables ⅲ
List of figures ⅲ
Abstract ⅵ
제 1장. 서 론 1
1.1. 연료전지 1
1.2. 연료전지의 원리 2
1.3. 연료전지의 분류 4
1.4. 알칼라인 연료전지 7
1.5. 음이온 교환 막 15
제 2장. 실험 17
2.1. 시약 및 재료 17
2.2. 실험 방법 17
2.2.1. Branched poly(arylene ether sulfone)(BPAES) 랜덤 공중합체의 합성 17
2.2.2. 클로로 메틸화된 Branched poly(arylene ether sulfone)(CM-BPAES)의 합성 18
2.2.3. 클로로 메틸화된 Poly(phenylene oxide)(PPO)의 합성 18
2.2.4. Graphene Oxide(GO)의 합성 18
2.2.5. GO-Im의 합성 19
2.2.6. BPAES/PPO-GO-Im의 제막 및 4차화 반응 20
2.3. 특성 분석 25
2.3.1. Proton Nuclear Magnetic Resonance (1H-NMR) 25
2.3.2. Fourier-Transform Infared Spectroscopy (FT-IR) 25
2.3.3. Gel Permeation Chromatography (GPC) 25
2.3.4. 광전자 분광분석 시스템 (XPS) 25
2.3.5. 열 중량 분석법 (TGA) 25
2.3.6. 시차주사 열량측정법 (DSC) 26
2.3.7. 이온교환용량 (Ion Exchange Capacity, IEC) 26
2.3.8. 함습률 (Water uptake) 26
2.3.9. 팽창비율 (Swelling Ratio) 27
2.3.10. 형태학 특성 27
2.3.11. 이온 전도도 (Ionic Conductivity) 27
제3장. 결과 및 고찰 29
3.1. BPAES, CM-BPAES 및 CM-PPO의 합성과 구조분석 29
3.2. 무기물의 합성과 구조분석 33
3.3. 무기물의 표면분석 37
3.4. QBPAES/PPO-GO-Im 복합막의 제조 및 구조분석 39
3.5. 열적 특성 43
3.6. 물 함습률, 팽창비율 및 IEC 47
3.7. 이온 전도도 및 활성화 에너지 51
3.8. 알칼리 안정성 54
제 4장. 결론 57
참 고 문 헌 58

최근 본 자료

전체보기

댓글(0)

0