메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학위논문
저자정보

김석준 (부산대학교, 부산대학교 대학원)

지도교수
김송길
발행연도
2022
저작권
부산대학교 논문은 저작권에 의해 보호받습니다.

이용수2

표지
AI에게 요청하기
추천
검색

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
A high-performance memristive device is a key component in neuromorphic computing. Conventional memristors based on metal oxides such as TiOx can only mimic a single characteristic of neuromorphic layers and thus, it does not allow for the multi-terminal state-switching control which enables to simulate diverse neuron-synapse signal transfer processes more dynamically. Recently, two-dimensional nanomaterials have drawn a great attention in simulating a dynamic process of neuromorphic computing with their superior and unique properties. Here, we suggest hexagonal boron nitride (h-BN) encapsulated graphene heterostructure to utilize as a channel material for memristive devices. The top h-BN layer, which protects graphene channel from the external environment (light, gas, contaminants, etc.), allows to understand the intrinsic electrical properties of interface between graphene and h-BN. Since the impurities on the bottom h-BN layer form charge trapping sites where the local electric field induces the charge carrier trapping, the device shows the gate bias-dependent electrical properties with hysteresis behavior. Furthermore, the retention time confirms that once charge trapping occurs, it takes at least few days to recover to the original state. Based on the charge trapping mechanism, the simple h-BN/graphene/h-BN transistor is expected to be utilized as a short-term memristive device as well as a high-performance two-dimensional device.

목차

1. INTRODUCTION ......................................................................................................... 1
1.1 Research Background ......................................................................................................... 1
1.1.1 Two Dimensional (2D) Materials ........................................................................ 1
1.1.1.1 Graphene
1.1.1.2 Hexagonal Boron Nitride (h-BN)
1.1.1.3 Molybdenum Disulfide (MoS2)
1.1.2 Neuromorphic Computing Technology ............................................................... 4
1.1.3 Memristor ............................................................................................................... 4
1.1.4 Metal-Insulator-Metal Based Memristor .............................................................. 5
1.1.5 Oxide Layer Based Interfacial Charge Trapping ............................................... 6
1.2 Objective ............................................................................................................................ 12
2. SAMPLE PREPARATION AND DEVICE FABRICATION ............................... 13
2.1 Fabrication of the h-BN Encapsulated Graphene Heterostructure ............................... 13
2.2 h-BN/Graphene/h-BN Device Fabrication ....................................................................... 14
3. MATERIAL (CHANNEL) CHARACTERIZATION .............................................. 17
3.1 Thickness Measurement of the h-BN/Graphene/h-BN Channel ................................... 17
3.2 Raman Spectroscopy ......................................................................................................... 20
3.2.1 Raman Fingerprints for 2D Nanomaterials ....................................................... 20
3.2.1.1 Raman Spectra of h-BN
3.2.1.2 Raman Spectra of Graphene
3.2.2. Raman Measurement Results of Our Sample ................................................. 22
3.2.2.1 Raman Spectra of Unit Layer (h-BN and graphene)
3.2.2.2 Raman Spectra of h-BN/Graphene/h-BN Channel
4. DEVICE CHARACTERIZATION.............................................................................. 28
4.1 Electrical Transfer Characteristics ................................................................................... 28
4.1.1 Hysteresis and Gate bias-Modulated Doping State Control ........................... 28
4.1.2 Consideration for Light Induced Doping of Graphene on h-BN .................. 30
4.1.3 Mechanism for Hysteresis Behavior of h-BN/Graphene/h-BN FETs ............ 30
4.2 Memristive Characteristics of h-BN/Graphene/h-BN FETs .......................................... 36
5. CONCLUSION ........................................................................................................... 41
6. EXPLORATIVE RESEARCH WORK .................................................................... 42
REFERENCE ................................................................................................................... 46
요약 .................................................................................................................................. 54

최근 본 자료

전체보기

댓글(0)

0