1장에서는 PEMFC 분야의 과불화수지(PFSA)와 탄화수소막에 대해 설명하였다. 높은 산성도와 IEC를 가진 새로운 모노머로 만들어진 멤브레인은 PEM으로서 좋은 가치를 가지고 있습니다. 또한 리튬 이온 배터리 응용 분야에서 다양한 전해질 재료의 기본 및 성능에 대해 설명합니다. 넓은 포텐셜 윈도우와 높은 열 안정성을 가진 새로운 겔 폴리머 전해질은 리튬 배터리에 큰 잠재력을 가지고 있습니다. 2장에서 우리는 두 개의 열적 및 화학적으로 안정한 고분자 전해질을 합성했습니다. 폴리(2,5-디옥소-2,5-디히드로-1H-피롤-1-카르보닐) 술파모일 플루오라이드-코-스티렌)(PDDPCSFS), 및 술폰화된 Pmax-1200(SPmax-1200). PDDPCSFS 및 SPmax-1200은 (70.50 및 75.44) mS/cm 양성자 전도도(s), (30 및 48) % 수분 흡수율(WU), (1.35 및 1.93) meq./g 이온 교환 용량(IEC) 값, 각각 80 °C에서. 우리는 또한 PDDPCSFS와 SPmax-1200 폴리머를 다른 비율로 혼합하여 혼합 고분자 전해질을 준비했으며 혼합 고분자 전해질이 우수한 이온 전도 채널을 형성하여 모체 화합물에 비해 향상된 성능을 나타냄을 관찰했습니다. 블렌드 폴리머, 블렌드(9:1) 및 블렌드(8:2)는 80 % 상대 습도(RH), 기계적 및 화학적 안정성은 나피온 117보다 높거나 비슷합니다. 또한, 블렌드(9:1) 및 블렌드(8:2) 고분자 전해질을 사용한 연료 전지의 최대 전력 밀도는 약 ca. (0.55 및 0.59) W/cm2는 각각 상용 고분자 전해질을 사용하는 연료 전지의 전력 밀도에 매우 가깝습니다. 3장에서는 플루오로술포닐이미드산을 포함하는 새로운 단량체와 폴리머를 합성합니다. 폴리에틸렌 글리콜 디메타크릴레이트(PEGDMA)와 메타크릴아미드(MAA) 및 플루오로술포닐 이소시아네이트(FSO2NCO)에 의해 합성되는 메타크릴로일 플루오로술포닐이미드(MAFSI)를 사용한 UV 경화 기술을 통해 일련의 고분자 전해질 막이 제조됩니다. MAFSI 단량체와 고분자 전해질(PMFP)은 성공적으로 합성되었으며 1H NMR 및 FT-IR로 구조를 확인했습니다. 멤브레인은 3.97~5.71 meq./g의 높은 IEC 값에도 불구하고 79.14~110.87 mS/cm의 높은 양성자 전도도, 8.74~28.57 %의 낮은 수분 흡수율, 6.5~30.8 %의 낮은 치수 팽창을 나타냅니다. 또한, 멤브레인은 최대 150 °C의 온도에서 우수한 열 안정성을 나타내며 멤브레인의 표면 형태는 MAFSI와 에틸렌 글리콜 세그먼트 사이의 우수한 상 분리를 관찰했습니다. 4장에서는 플루오로술포닐이미드산을 포함하는 새로운 단량체와 고분자를 합성합니다. 폴리에틸렌 글리콜 디메타크릴레이트(PEGDMA)와 2-히드록시에틸 메타크릴레이트(HEMA) 및 플루오로술포닐 이소시아네이트(FSO2NCO)에 의해 합성되는 플루오로술포닐 메타크릴로일 우레탄(FSMU)을 사용한 UV 경화 기술을 통해 일련의 고분자 전해질 막이 제조됩니다. FSMU 단량체와 고분자 전해질(PFSPE)이 성공적으로 합성되었으며 1H NMR과 FT-IR을 통해 구조를 확인했습니다. 준비된 그대로의 PFSPE는 우수한 열 안정성(120 °C까지 안정)을 나타냈고, PFSPE-2는 유사한 이온 전도도(80 °C에서 2.26 x10-4 S/cm), 더 나은 계면 호환성을 나타냈습니다. 얻은 결과는 리튬 이온 배터리 개발을 위한 겔 폴리머 전해질을 통해 높은 이온 전도성과 좋은 상용성을 제공할 수 있습니다. 5장에서는 LIB에서 전해질과 전극 사이의 계면 접촉 문제를 해결하기 위해 AIBN을 개시제로 사용하여 제자리 라디칼 중합을 소개합니다. 여기에서, 우수한 열 안정성(120 °C), 실온에서 1.37 × 10-4 S cm-1의 높은 이온 전도도를 나타내는 일련의 현장 폴리(플루오로술포닐우레탄) 기반 고분자 전해질(PFSED)이 합성됩니다. PFSED는 또한 넓은 전기화학적 창(>4.8V vs Li/Li+)과 조립된 LiFePO4/PFSED/Li 전지가 있는 리튬 양극과의 우수한 호환성을 보여줍니다. 이 연구는 현장 양이온 중합에 의해 제조된 새로운 고분자 전해질 및 전극-전해질의 계면 저항 감소에 미치는 영향을 개발하는 데 기여합니다.
A study on the synthesis and properties of highly ionic fluorosulfonylimide group monomers. In the chapter 1, we described perfluoropolymer(PFSA) and hydrocarbon membranes in the field of PEMFC. A membrane made of a new monomer with high acidity and IEC has good value as PEM. In addition, the basics and performance of various electrolyte materials in lithium-ion battery applications are described. A new gel polymer electrolyte with a wide potential window and high thermal stability has great potential for lithium batteries. In the chapter 2, we have synthesized two thermally and chemically stable polymer electrolytes; poly(2,5-dioxo-2,5-dihydro-1H-pyrrole-1-carbonyl) sulfamoyl fluoride-co-styrene) (PDDPCSFS), and sulfonated Pmax-1200 (SPmax-1200). PDDPCSFS and SPmax-1200 showed (70.50 and 75.44) mS/cm proton conductivity (s), (30 and 48) % water uptake (WU), and (1.35 and 1.93) meq./g ion exchange capacity (IEC) value, respectively, at 80 °C. We also prepared blend polymer electrolytes by blending PDDPCSFS and SPmax-1200 polymer with different ratios and observed that the blend polymer electrolytes exhibited enhanced performances compared to their parent’s compounds by forming an excellent ion-conducting channel. The blend polymers, Blend (9:1), and Blend (8:2) exhibited excellent IEC (2.09 and 2.19) meq./g, s (93.14 and 117.50) mS/cm at 80 °C under 80% relative humidity (RH), mechanical, and chemical stability, which are higher or comparable to Nafion 117. Moreover, the maximum power density of fuel cells with Blend (9:1) and Blend (8:2) polymer electrolytes was ca. (0.55 and 0.59) W/cm2, respectively, which are very close to the power density of fuel cell with commercial polymer electrolyte. In the chapter 3, we are to synthesized a new monomer and polymer containing fluorosulfonyl imide acid. A series of polymer electrolyte membranes are prepared via UV-curing technique with polyethylene glycol dimethacrylate (PEGDMA) and the methacryloyl fluorosulfonylimide (MAFSI), which is synthesized by methacrylamide (MAA) and fluorosulfonyl isocyanate (FSO2NCO). The MAFSI monomer and the polymer electrolyte (PMFP) are successfully synthesized and confirmed the structure by 1H NMR and FT-IR. The membranes exhibit high proton conductivity from 79.14 to 110.87 mS/cm, low water uptake from 8.74 to 28.57%, and low dimensional expansion from 6.5 to 30.8% in spite of high IEC values from 3.97 to 5.71 meq./g. In addition, the membranes exhibit good thermal stability up to 150°C temperatures and the surface morphology of the membrane observed good phase separation between MAFSI and ethylene glycol segments. In the chapter 4, we are to synthesized a new monomer and polymer containing fluorosulfonyl urethane acid. A series of polymer electrolyte membranes are prepared via UV-curing technique with polyethylene glycol dimethacrylate (PEGDMA) and the Fluorosulfonyl methacryloyl urethane (FSMU), which is synthesized by 2-Hydroxyethyl Methacrylate (HEMA) and fluorosulfonyl isocyanate (FSO2NCO). The FSMU monomer and the polymer electrolyte (PFSPE) are successfully synthesized and confirmed the structure by 1H NMR and FT-IR. The as-prepared PFSPEs exhibited good thermal stability (stable up to 120°C), PFSPE-2 displayed a comparable ionic conductivity (2.26 x10-4 S/cm at 80°C), better interfacial compatibility. Obtained results could provide the possibility of high ionic conductivity and good compatibility through gel polymer electrolyte for the development of Li-ion batteries. In the chapter 5, an in situ radical polymerization is introduced using AIBN as an initiator to address the issue of interfacial contact between electrolyte and electrodes in LIBs. Herein, a series of in situ poly(fluorosulfonyl urethane)- based polymer electrolytes (PFSEDs) are synthesized, which present good thermal stability (120°C), high ionic conductivity of 1.37 × 10–4 S cm–1 at RT. The PFSEDs also show a wide electrochemical window (>4.8 V vs Li/Li+), and excellent compatibility with the lithium anode with an assembled LiFePO4/ PFSEDs /Li cell. This work contributes to developing a new polymer electrolyte fabricated by in situ cationic polymerization, and its effects on the reduction of the interfacial resistance of electrodes–electrolyte.
TABLE OF CONTENTSList of Tables vList of Figures and Schemes viAbstract ixChapter 1 General Introduction of Renewable Energy. 11.1. Proton Exchange Membrane Fuel Cell (PEMFC) 11.2. Electrolyte membranes for PEMFC 41.2.1. Perfluorinated sulfonic acid membranes 41.2.2. Aromatic hydrocarbon backbone membranes 81.3. Li-Ion batteries 91.4. Electrolyte for Li-Ion batteries 101.5. Lithium salt for Li-ion batteries 121.6. Strategy and object 16Chapter 2. Flexible blend polymer electrolyte membranes with excellent conductivity for fuel cells 172.1. Introduction 172.2. Materials and methods 192.2.1. Materials 192.2.2. Synthesis of PDDPCSFS 202.2.3. Synthesis of SPmax-1200 212.2.4. Preparation of blend polymer membranes 222.2.5. Instrumentations and measurments 232.3. Results and discussions 242.3.1. Characterizations of the monomers and polymers 242.3.2. WC, IEC, hydration number, dimensional and thermal properties of the membranes 272.3.3. Proton Conductivity (σ), chemical and mechanical stability of the membrnaes 292.3.4. Cell performance and surface morphology of the membranes 312.4. Conclusions 33Chapter 3. Synthesis and Characterization of cross-linked polymer with Sulfonylimide group via UV-radical polymerization for PEMFC 353.1. Introduction 353.2. Materials and methods 373.2.1. Materials 373.2.2. Measurements 373.2.3. Synthesis of Methacryloyl fluorosulfonyl imide (MAFSI) 393.2.4. Preparation of Poly(MAFSI-PEG) polymers(PMFP) 403.3. Result and discussion 413.3.1. Characterization of monomer (MAFSI) 413.3.2. Characterization of Polymers (PMFP) 423.3.3. IEC, Water uptake and dimensional stability of PMFP membranes 433.3.4. Proton Conductivity of the PMFP membranes 453.3.5. Thermal stability of PMFP membranes 473.3.6. Morphology of the membranes 483.3.7. Chemical stability of the membranes 493.3.8. Mechanical stability of the membranes 503.3.9. Cell performance of the PMFP membranes 513.3. Conclusions 52Chapter 4. Study of UV-cured Cross-Linked Gel Polymer Electrolyte Containing Fluorosulfonyl urethane group for Safe and High Performance Li-ion Batteries 534.1. Introduction 534.2. Materials and Methods 554.2.1. Materials 554.2.2. Instrumentations and measurements 554.2.3. Synthesis of Fluorosulfonyl methacryloyl urethane(FSMU) monomer 564.2.4. Synthesis of Cross-linked polymer membranes 574.2.5. Fabrication of Symmetrical, Half Cells 584.3. Result and discussion 594.3.1. Characterization of monomer 594.3.2. Characterization of PFSPE membranes 594.3.3. Thermal properties of the membranes 604.3.4. Ionic Conductivity and Electrochemical Stability of Prepared Electrolyte Membranes 614.4. Conclusions 63Chapter 5. Studies of In-situ Polymerization with Low Interfacial Resistance on Gel Polymer Electrolyte for Li-Ion Batteries 645.1. Introduction 645.2. Materials and Experiment 655.2.1. Materials 655.2.2. Instrumentations and measurements 665.2.3. Synthesis of Fluorosulfonyl methacryloyl urethane(FSMU) monomer 665.2.4. Synthesis of In-situ gel polymer electrolyte(PFSED) 675.3. Result and discussion 685.3.1. Characterization of FSMU monomer 685.3.2. Characterization of PFSEDs 695.3.3. Thermal properties of the membranes 705.3.4. Ionic Conductivity and Electrochemical Stability of Prepared Electrolyte 715.4. Conclusions 72References 74Abstract (in Korean) 92